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CHAPTER  1 

Chapter 1: Introduction 

J IAJIA SUN, XINYAN LI, AND FELICIA NURINDRAWATI 

1.1 LEARNING OBJECTIVES 

Hello, everyone. Welcome to the potential field class! In this class, 
we will focus on the fundamental theory and commonly used data 
processing and interpretation techniques in potential field 
methods. This class consists of both lectures and lab exercises. 
After completion of the class, students can expect to 

• Understand the fundamental theory behind potential 
field methods; 

• Understand gravity and magnetic data acquisition 
practices, instrumentation and processing procedures; 

• Understand various data processing techniques in Fourier 
domain; 

• Be familiar with various interpretation methods for depth 
estimates; 

• Be able to use Geosoft software to perform 2D basin 
modeling; 
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• Understand the 3D inversion theory and methods for 
potential field data; and 

• Be familiar with various applications of potential field 
methods. 

The target audience of this course is anyone who is interested in 
learning more about 

• fundamental potential field theory; 

• Processing and interpretation methods; and 

• Application examples of potential field methods to 

• Petroleum; 

• Mineral; 

• Geothermal; 

• Geotechnical/Engineering (e.g., caves and tunnels); 

• Regional to continental-scale geological studies; and 

• Environmental (e.g., unexploded ordnance UXO) 

1.2 POTENTIAL 

Both gravity and magnetic fields can be described using a quantity 
called potential. Potential is a scalar and obeys Laplace’s equation 
in source-free regions. Therefore, these two methods are 
collectively referred to as potential field methods in the geophysics 
community. 

The fact that potentials are scalar quantities makes it easier to 
deal with the mathematics involved. After all, working with scalars 
is always easier than working with vectors. Note that, both gravity 
and magnetic fields are vector fields because gravity not only has a 
magnitude (such as 9.8 m/s2) but also has a direction; the same is 
true for the magnetic field. 
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1.2.1 GEOPHYSICAL SIGNALS 

Geophysical signals are mostly produced by contrasts in some 
physical properties of Earth materials. For example: 

• Variations in electrical conductivities of the subsurface 
rocks produce secondary potentials that can be measured 
in a DC survey and used for subsurface imaging; 

• Differences in the reflectivity/absorption of near-surface 
Earth materials result in useful remote sensing images; 

• Changes in acoustic impedance between Earth materials 
result in seismic reflections. 

Specifically, in gravity & magnetic methods, the material properties 
to be considered are density and magnetization (magnetic 
susceptibility), respectively. Signals result from horizontalhorizontal changes 
in the density and magnetization of the Earth materials can be 
used for detecting lateral changes produced by either vertical 
displacement of homogeneous layers or by inherent lateral 
inhomogeneities in the Earth materials themselves, as model 
examples shown in figure (a, b, c) below. However, horizontal layers 
with constant properties (figure (d)) provide no signal and 
consequently are “invisible” to the gravity and magnetic methods. 
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Changes in density ad magnetization of the earth materials. Image courtesy of 
Stuart Hall at UH. 

In fact, we should be aware that, the above statements are only 
true for surface gravity and magnetic measurement. If there are 
borehole gravity and magnetic measurements, potential field 
methods can be used for detecting physical property changes in 
the vertical direction. More details on borehole gravity can be 
found in https://wiki.aapg.org/Borehole_gravity, and some 
borehole gravity applications can be found here. 

1.3 APPLICATION EXAMPLES 

There are many applications of potential field methods. In the 
following, we will discuss some major geoscience applications. 

4 J IAJIA SUN

https://wiki.aapg.org/Borehole_gravity
https://wiki.aapg.org/Borehole_gravity_applications:_examples


1.3.1 APPLICATION TO OIL, GAS AND GROUNDWATER 
STUDIES 

Example 1: Geologic mapping 

Geologic contacts can be quickly inferred from the magnetic maps, 
as illustrated in the figure below (image credit from Douglas 
Oldenburg at UBC). 

Inferring from magnetic map to geologic contacts. Image credit: Douglas W. 
Oldenburg at UBC. 

Example 2: Salt dome imaging 

In many Gulf of Mexico prospects, salt plays a key role in acting as a 
structural trap. Overhanging salt often forms seals, and sediments 
on salt flanks can have structural and stratigraphic pinch-outs 
against the salt. The exact shape of the salt is critical in 
understanding these traps. Unfortunately, seismic imaging often 
tends to be poor in these prospects. The seismic image from 
O’Brien et al., 2005, TLE, illustrates the limitation of interpreting the 
salt dome using seismic imaging alone. 
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Prestack depth-migration profile through the K-2 salt body. Note the excellent 
image definition underlying the tabular portion of the salt body. However, the 
seismic image underlying the peak of the salt is very poor and interpretation 
of the base of salt and subsalt section is uncertain in this area, (O’Brien et al., 
2005, TLE) 

Example 3: Groundwater studies 

Time-lapse gravity data, also known as 4D gravity data (with the 
4th dimension being time) is often used to monitor the movement 
of water underground. Time-lapse data can be obtained by 
conducting multiple surveys in the same location but at different 
times. Besides gravity data, there are other methods that can be 
used to monitor groundwater movement. However, due to the 
delay in signal responses of the groundwater movement, some 
methods might be less effective than others. According to a study 
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conducted by Kenedy, 2016, time-lapse gravity is “the most 
sensitive to movement of water through an unsaturated zone”. 

One example of groundwater monitoring with time-lapse gravity 
approach is shown in Davis & Li, 2008. In this paper, the movement 
of water injected into an underground artificial aquifer storage 
system is monitored using time-lapse microgravity data (meaning 
that the data obtained is in the orders of micro-Gal). The following 
figure shows the total gravity difference between April 2004 and 
February 2005, and the white (+) indicates the location of the 
injection well. We see that there is a positive gravity difference 
around the injection well, spanning towards the north-west side, 
which is the direction of the water injected into the reservoir. 

Example 4: Reservoir waterflood surveillance 

One of the most notable use of the 4D microgravity method is 
the time-lapse microgravity survey at Prudhoe Bay, Alaska (Hare, 
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2008)  In this case, the gas production in the field started to decline. 
It was suspected that there might be something wrong with the 
water injection which is used to maintain pressure, and therefore 
maintain production. The problem is that there were only a few 
wells available in the area that can be used to monitor the water 
movement in the reservoir. With that, they considered the use 
of gravity survey to monitor the waterflood movement in the 
reservoir. The figure below shows density models obtained 
through inversion (with each figure showing different inversion 
results using different inversion constraints). The method was 
successful in determining the behavior of the waterflood 
movement in the reservoir. 

If a denser feature replaces the position of a feature that is less dense, it will 
create a positivepositive  density contrast. If we inject water to a reservoir, the water 
would move and replaces the position of less denser features (gas/air). Thus, 
when water replaces gas, it will create a positive anomaly in our data.  
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1.3.2 APPLICATION TO MINERAL EXPLORATION 

Gravity and magnetic survey are especially useful in mineral 
explorations, as they have useful features that are not offered by 
seismic surveys, such as how gravity and magnetic surveys can 
cover a massive geographical region in just a couple of days with 
surveys conducted using airplanes. Examples for the use of gravity 
and magnetic surveys in mineral exploration are: 

• Sulfide exploration 

Massive sulfide deposits that came from volcanic sources and are 
rich in copper, zinc, lead and can contain other precious metals 
such as gold and silver (mining.com). The deposit is very high in 
density in comparison to the background, and thus a gravity survey 
is generally done for these types of target. The following figure is 
the gravity data obtained from a massive sulfide as well as the 
cross-section of the interpreted geology (credit: Yaoguo Li) 

Due to the magnetic properties of the massive sulfide, magnetic 
surveys can also be done for this type of target. The following figure 
shows the aeromagnetic data of the Raglan deposit, a well-known 
nickel copper deposit in Canada (Watts, 1997). One of the questions 
posed for this region is whether the peridotite outcrops (appear in 
purple on the surface geologic map) are connected at depth or not. 
This is an important information to know the optimum location for 
drilling. 
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After inversion of the magnetic data, it is found that the outcrops 
are connected at depth and the drill hole can then be placed 
according to the interpretation from the inversion results. 

• Iron exploration 

Other examples of gravity and magnetic data used in mineral 
exploration would be Iron exploration (Martinez and Li, 2015). The 
following Figure is the gravity gradient tensor data and the 
magnetic data for a geographical region as well as the inversion 
results. 
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• Copper-Gold exploration 

Another example is from Copper-Gold exploration (Leao-Santos, 
2015). The following figure shows the geologic map as well as the 
magnetic data of the region. We see that the overall trend in the 
geologic map is also apparent in the magnetic data map. Figure (a) 
and (b) showcases the 3D inversion results of the magnetic data 
and the interpretation based on the inversion result. 
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• Diamond Exploration 

Diamonds are typically found in kimberlite pipes, which are igneous 
rocks with magnetic properties. From the following figure, we can 
see that the Total Magnetic Intensity (TMI) data has outlined an 
elongated body indicated with the negative anomaly values in 
Figure (a). After inverting the magnetic data, we can see the two 
broad elongated sources, interpreted as the kimberlite dikes. The 
vertically oriented bodies represents the kimberlite pipes in the 
region. 

• UXO Detection 
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UXO (Unexploded ordnance) are explosive weapons, such as 
bombs, missiles, grenades, that did not explode during 
deployment, but poses high risk of detonation even decades after 
it was buried underground. Fortunately, UXOs are highly magnetic 
and thus we can detect them by conducting magnetic surveys over 
the region of interest. The following are examples of UXO data 
(credit: Yaoguo Li) 

1.3.3 BASEMENT CHARACTERIZATION 

Basement characterizations are done by interpreting the basement 
geology of a certain region based on the data obtained in the 
survey. Gravity and magnetic surveys can cover extensive 
geographical regions in a matter of  days (using airplane or 
helicopter). Using inversion, the distribution of density and the 
magnetic susceptibility of the region can be found. Potential 
resources can be interpreted based on the recovered physical 
parameters, as certain geological units have a known range of 
density and magnetic susceptibility values. The following figure 
shows a 3D magnetic susceptibility model and 3D density contrast 
from inversion results and the interpreted geological units based 
on the the inversion results. 

CHAPTER 1: INTRODUCTION 13



1.3.4 CAVE DETECTION EXAMPLE 

Sinkholes are a serious environmental problem and hazard, 
especially around the Dead Sea area. The largest sinkhole found 
in the region was as large as 30m in diameter and 15 m deep. 
The recent collapse on both sides of the main highway at E’n Gedi, 
a popular destination for recreation and tourism, poses a risk for 
many people in the region. The sinkholes initially opened at a 
campsite east of the road, and subsequently, several sinkholes 
opened west of the road, which indicates that there might be a 
possible collapse of the highway in the near future. Gravity method 
is especially useful for this case. Having a hole underground surely 
will create a large density contrast (essentially replacing the rocks 
underground with air, a substance with a very low density).  The 
following figure shows a time-lapse gravity data. The gap between 
the gravity data between March-April and May-June indicates the 
development of sinkholes happening in the region of study 
(Rybakov et al., 2001). 
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1.4 ADVANTAGES OF POTENTIAL FIELD 
METHODS 

In comparison with other geophysical methods, such as seismic 
exploration, there are a lot of advantages of potential field methods 
that make it attracting, for example: 

• it is inexpensive; 

• measurements can be covered a large area in a short 
timeframe; 

• signal sources are passive and non-destructive, we do not 
need to create any man-made sources; 

• quick interpretation can be made; 
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• global coverage data, etc. 

(a) Global gravity field from GRACE (https://en.wikipedia.org/wiki/
Gravity_of_Earth). (b) Global magnetic field from EMAG2 
(https://www.ngdc.noaa.gov/geomag/emag2.html). 
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CHAPTER  2 

Chapter 2: Potential Field Theory 

J IAJIA SUN, XINYAN LI, FELICIA NURINDRAWATI, XIAOLONG 
WEI, AND KENNETH LI 

2.1 FUNDAMENTAL CONCEPTS 

In this section, we will look at a few fundamental concepts that 
are highly relevant to the gravity and magnetics. These concepts 
include field, work, conservation field, and potential. 

2.1.1 FIELD 

A field is a set of functions of space and time. Mathematically, a 
field can be summarized as follows: 

There are two types of fields that we are concerned about within 
this course, material fields and force fields. 

A few examples of material fields include 

•  A density field that describes the density value at each 
point of a material (e.g., the Earth) at a given time; 

•  A porosity field that describes the porosity value at each 
17



point of a material (e.g., a reservoir) at a given time; 

•  A temperature field that describes the temperature value 
at each point of a material (e.g., a turkey) at a given time. 

As you can tell, a material field describes some physical property of 
a material at each point of the material and at a given time. 

The second type of field that is relevant to this course is the 
force field. A force field describes some kind of forces that act at 
each point of space at a given time. Some examples of force fields 
include 

• Gravitational field that describes the gravitational force 
that acts at each point of space at a given time; 

• Magnetic field that describes the magnetic force that acts 
at each point of space at a given time. 

Moreover, the field can also be classified as either a scalar field or 
a vector field. 

A scalar field is a single function of space and time, 
mathematically denoted by 

For example, a scalar field could be: 

• displacement of a stretched string; 

• temperature of a volume of gas; 

• density within a volume of rock. 

A vector field is a vector function of space and time, which can be 
written as 

   or   
Since it is a vector function, the vector field is characterized by 

three functions of space and time. Mathematically, these functions 
can be written as: 
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Examples of vector fields including: 

• flow of heat; 

• velocity of a fluid; 

• gravitational attraction of a mass. 

To visualize vector fields, we can use field lines, aka lines of flow, 
or lines of force. These are lines that are tangential to the vector 
field at every point. Therefore, scalar fields do not have field lines. 
Since field lines are tangential to the vector field at every point, it 
follows that small displacement along a field line must have , , 
and  components proportional to the corresponding , , and 
components of the field at the point of its displacement. This can 
be proved by the illustration and derivations in the following. 

The red curve shows a field line. At a location (i.e., green dot), the blue arrow is 
tangential to the red curve. The length of the blue arrow corresponds to the 
magnitude of the force at the green dot. The dashed blue arrows are two 
decomposed components of the force F. The angle is between Fx and F. 

From the above figure (a), it is straightforward to derive the 
equation 

(1)   

Now, let’s forget about the force in figure (a). Just consider this 
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red curve in figure (b) as a function . Then at the same 
green dot location, what is the derivative of the function 
at this point? According to the definition of derivative evaluated at 
a point, we can write the following equation: 

(2)   

Since  is common for both equation (1) and (2), we can 
then link these two equations by 

(3)   

Rearranging equation (3), we will have: 

(4)   

Further extending this equation to 3D space, it can be 
mathematically expressed as: 

(5)   

Therefore, if a vector field  is continuous, its field lines can be 
mathematically described by the differential equation (5). 

Exercises 

Find the gravitational attraction of a uniform sphere of mass M, centered at point Q, and 
observed outside the sphere at point P, through the given equation of 

    

where  is a constant,  is the distance from Q to P, and  is the unit vector directed 
from Q to P. 
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Let Q be at the origin. Use the differential equation to describe the gravitational field 
lines at each point outside the sphere. 

2.1.2 WORK 

Let us recall what we have learned in college Physics courses, the 
work is defined as the product of force and distance. For example, 
as the cartoon image shown below, assuming a constant force 
acting on the airplane from time equals zero to some distance 
after some time interval, the work done on the airplane, denoted 
by , can be mathematically calculated by: 

    
For this simple example, the force is assumed to be along with 

the same direction of the displacement. The unit of work is Joules, 
which is equal to Newton – meter is the SI unit system. 
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Image credit: https://www.grc.nasa.gov/WWW/K-12/airplane/work.html 

However, if the force is no longer a constant value, but varies along 
the displacement, then the work is the integrated value of the force 
along the distance. Its math expression is as follows: 

    

Moreover, for the vector quantity force, if the force direction is 
not parallel with the moving path, then work is the integrated value 
of the force component along the direction of the path. Let the 
angle between the force and the displacement be , the work can 
be mathematically calculated by the following: 

    

Let us consider a more realistic example, illustrated by the figure 
below. A particle of mass  moves from position  to  under 
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the influence of force field . What is the work done by the force 
field in this example? 

Image credit: Blakely, 1996, p4 

In this given example, the force direction is not aligned with the 
particle displacement path. Therefore, the work required to move 
the particle from position  to  is the integrated value of the 
force component along the path direction, which can be 
mathematically represented as the following: 

    

2.1.3 CONSERVATIVE FIELD 

In general, the work depends upon the path taken by the particle. 
However, for some fields, the work is independentindependent of the path of 
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the particle. These fields are said to be conservative. Please keep 
in mind that, since we are talking about work and force, the fields 
we are talking about are vector fields, which are vector functions of 
space and time. 

Now let us consider another example of work done in the 
conservative field. The scenario is illustrated in the figure below. 
Assuming a particle of mass moves through a conservative field, 
first from position  to  in an irregular path, then parallel to the 

 axis with an additional small distance . What is the work? 

Image credit: Blakely, 1996, p5-6 

We can deal with work done from position  to  by 
summing the work from  to  with work from  to . 
Its math expression is as follows: 

(1)   
Rearranging the terms in equation (1), we will have equation (2) 

below: 
(2)   
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Since the path from position  to  is parallel with 
axis, we can calculate the work done along this path segment by 
the integration as follows: 

(3)   

Therefore, combining equation (2) and (3), we will have the 
following equation: 

(4)  

By applying the Mean value theorem to the integral calculation, 
equation (4) can then be written as follows: 

(5)  

Dividing both sides of equation (5) by the small distance , we 
will have the new equation as below: 

(6)   

Now if we make  approach 0, that is, 

(7)  

For the left-hand side of the equation (7), the limit is defined to 
be the derivative of the function work  evaluated at point 
; the right-hand side of the equation is defined to be the force 
component along  axis. Therefore, equation (7) can then be 
expressed as follows: 
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(8)   

Similarly, we can repeat the same derivation for the  and 
directinos, and obtain the following: 

(9)   

In a more compact form, equation (9) can then be summarized 
as follows: 

(10)   
How to interpret this equation? It can be explained in the 

following aspects: 

• gradient of work (or, work functino) (i.e., the left-hand side 
of equation (10)) is equal to force (i.e., the right-hand side 
of equation (10)); 

• derivative of work in any directino is equal to the 
component of force in that direction (e.g., the 
component in this example); 

• the vector force field  is completely specified by the 
scalar field . 

In brief summary so far, a conservative field, , is given by the 
gradient of its work function, . Or vice versa, any vector field 
that has a work function satisfying the relation 

 is conservative. 
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2.1.4 POTENTIAL 

Potential  of a vector field  is defined as the work function (or 
its negative). Its math representation is as follows: 

    
Usually, potential is defined at the infinity to be 0. And the 

potential at point  is defined as 

    

2.1.5 EQUIPOTENTIAL SURFACE 

As the name implies, an equipotential surface is a surface on 
which the potential remains constantconstant. That is 

    
Let us suppose  is a unit vector that is tangential to an 

equipotential surfacee of , which is illustrated in the figure below. 
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The blue arrow curve represents an equipotential 
surface of F, the red arrow is a unit vector tangential to 
the surface, the green arrow is the field line at that point. 

Since the potential is constant at any point along the equipotential 
surface, then we will have 

    

That is, the dot product of a unit vector  with force field 
is equal to the derivative of the potential with respect to the unit 
vector, . We can think the derivative definition as the finite 
difference, i.e., the potential difference between  and , and if 
the distance between them is approaching to 0, then the derivative 
equals 0. Therefore, the dot product of the unit vector with force 
field equals 0. 

According to the math definition of dot product between two 
vectors, since the dot product of the unit vector with force field 
equals 0, then the unit vector is perpendicular to the force field. 
That is, 
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Therefore, the field lines at any point must be perpendicular 
to their equipotential surface. Conversely, any surface that is 
everywhere perpendicular to all field lines must be an equipotential 
surface. And no work is done when moving a test particle along an 
equipotential surface. 

2.2 HELMHOLTZ DECOMPOSITION 

Helmholtz theorem can be expressed as the following equation: 
    
This basically says that ““any vector field (F)vector field (F) can be represented as 

the gradient of a scalargradient of a scalar (( ))  and the curl of a vector (A)”.curl of a vector (A)”.  The details 
and proof behind the above equation will be explained in this 
section. 

Recap on important concepts 

Before moving on to the next part, make sure that you understand the following points 
in order to make it easier to understand the derivation of the Helmholtz theorem. 

• The difference between gradient ( ), divergence ( ), and curl ( )

• The curl of a conservative field (such as gravity field) is always zero 
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• The divergence of a curl is always zero  

Please review the previous section if the points above does not make sense to you. 

 

2.2.1. LAPLACE OPERATOR 

Laplace operator is defined as the divergence of the gradient of a 
function. It can be expressed using the following expression: 

    
where f is the function. To mathematically understand what the 

Laplace operator means, let us consider a Cartesian coordinate 
system with 3 directions (x,y,z). Thus the above expression can also 
be expressed as such: 

 

    

 
 
The Laplacian (Laplacian operator) notation can also be further 

simplified as  or . 
 
Thus the Laplacian operator itself in a Cartesian coordinate can 

be written as: 

    

An Example of a Laplacian 
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One example of a Laplacian is the Laplacian of an inverse distance, which is  0 
everywhere except at . The Laplacian of the inverse distance can be expressed as 
such: 

    

The delta function ( ) represents the following: 

    

The derivation of this function will be covered in the next section. 

2.2.2. POISSON’S EQUATION 

Poisson’s equation is expressed as the following: 

    
Usually, f is given, while we want to find what  is. The solution 

to the above equation can be expressed as an integral over all of 
space: 

    

2.2.2.1. Example of Poisson’s equation in gravity application 

The following is an example of Poisson’s equation: 

    
Usually, we know what  is and we want to know . The solution 
to the above equation can be expressed as such (just replace f with 

): 
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Given a density distribution, this is how you can calculate 
gravitational potential everywhere in space. 
In the above equation,  represents the gravitational potential, 
while represents density. Note the Laplacian operator in the left 
hand side of the equation. 
In this example, we can define a forward problem if we know  and 
want to know . If we know  and want to know , we would call 
this an inverse problem. 

2.2.2.2. Relation to Laplace’s equation 

In a region of space that is not occupied by sources (i.e. mass), the 
following are true: 

    

    
Note that having the Laplacian of the gravitational potential as 

zero does not mean that the potential itself is zero. 

2.2.3. HELMHOLTZ THEOREM 

2.2.3.1. Definition 

Previously, we have learned that a conservative field (F) can be 
represented as the gradient of a scalar ( ) 
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The above equation is actually a subset of the Helmholtz 

theorem, which states that: 

Any vector field F that is Any vector field F that is continuouscontinuous  andand  zerozero  at infinityat infinity  can be expressed as can be expressed as 
the sum of the gradient of a scalar and the curl of a vector: the sum of the gradient of a scalar and the curl of a vector: 

    
: scalar potential of F 
: vector potential of F 

In the following sections, we will be discussing on the proof of the 
Helmholtz theorem. 

2.2.3.2. Proof of Helmholtz Theorem 

First, let’s construct the following integral: 

    

• Q: point of integration 

• r: distance between point P and point Q 

• W: vector that we want to find (unknown) 

• F: vector that we already have (known) 

The above equation can be further split into 3 components in 
three-dimensional space as such: 
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Recall that in section 2.2.2: Poisson’s equation, we found the 
solution to Poisson’s equation( ): 

    

Notice the similar form of equation that we have in the integral that 
we formed and the solution to the Poisson’s equation. 

Thus, we can do the same with our integral and reformat it as 
such: 
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Note that W and F in the above equations are still vectors. 
Now, using the following vector identity: 

    

and therefore: 

    

we can form the following equation from : 

    
    
    
In the above equation, we know that  is a scalar and 

 is a vector 
In other words, we have proved that the vector field F can be 
expressed as the gradient of a scalar ( ) plus the curl of a 
vector ( ). 
Lastly, if we define: 

• 

• 

We can form the equation as: 
    

2.2.3.2. Scalar and Vector Potential 

Recall that at the beginning of our proof, we established the 
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integral: 

    

That means, we can express scalar potential as: 

    

While vector potential can also be expressed as: 

    

2.2.3.3. Consequences of Helmholtz theorem 

A vector field is irrotational (conservative) in a region if its curl 
vanishes everywhere 

    
According to Helmholtz theorem, the vector potential of this 

vector field becomes zero, and therefore: 
    
Conversely, it is easy to prove that , then 

by using the vector identity (shaded box in the previous section). 
Therefore, 
    
One example of an irrotational field would be the gravity 

field which has the following properties. The lines of a gravity field 
do not form loops, thus the curl of the gravity field is zero (

) and therefore   where  is the gravitational 
potential. 
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Similarly, a vector field is called solenoidal in a region if its 
divergence vanishes everywhere. 

    
Since the scalar potential becomes zero according to Helmholtz 

theorem, we can conclude that: 
    
for a solenoidal field. The above can be easily proven by using the 

vector identity introduced in the previous section. 
Therefore, 
    
One example of a solenoidal field is a static magnetic field. The 

field lines do not emanate from or converge to any point, and thus 
the divergence is zero ( ), and thus  where 
A is a vector potential. 
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2.3 GREEN’S IDENTITIES 

In this section, we will discuss about the Divergence theorem and 
the Green’s first, second, and third identities, which were first 
published in 1828 by an English mathematician George Green. 
More information about him can be found in the following links: 
https://uh.edu/engines/epi1924.htm, 
https://sites.math.washington.edu/~morrow/334_19/green.pdf, 
and https://cosmosmagazine.com/mathematics/this- week-in-
science-history-england-s-enigmatic- mathematician-is-born 

2.3.1 DIVERGENCE THEOREM 

Mathematically speaking, the Divergence theorem can be written 
as the following, 
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where the left-hand side of this equation represents the volume 
integral of the divergence over the region inside the surface, while 
the right-hand side of the equation represents the outward flux of a 
vector field  through a closed surface. The physical meaning can 
be illustrated through the cartoon image below. 

Physical meaning of the divergence theorem. 

Intuitively, it states that the sum of all sources (with sinks regarded 
as negative sources) gives the net flux out of a region. 

2.3.1.1 Application to gravity 

Now, if we consider the vector field  as the gravity field , so that 
, then let’s substitute it into the above divergence theorem 

equation, we’ll get the following: 
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From the previous section, we know that , therefore, 
replacing , we will get the equation as follows: 

    

Remembering that 

    
therefore, the above equation can be re-arranged into the format 

below: 

    

It can be noticed that the left-hand side integration gives the 
quantity of mass, , thus, the above equation can be further 
simplified as follows: 

    

where the right-hand side of this equation contains the surface 
integral of the flux of the gravity field through a closed surface. 

This equation implies that, if we do an integration of the gravity 
map over a study area, the integration gives an estimate of the 
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mass underneath the gravity map, that is responsible for the 
measured gravity data. 

Before moving to the Green’s identities, let’s review two 
equations that will be used later. 

    

and 

    

2.3.2 GREEN’S IDENTITIES 

The three identities can be derived from the vector calculus and 
the Laplace’s equation. Each of the three identities has different 
utility and implications for potential field study, and their common 
starting point is the divergence theorem (aka., Gauss’s theoremGauss’s theorem) 
discussed above. 

2.3.2.1 Green’s first identity 

Let’s assume that there are 

• two continuous functions  with continuous first-
order partial derivative; 

• and  also second-order derivative that’s also 
continuous; 
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• Then defining an arbitrary vector 

Applying the divergence theorem, i.e., replacing vector field  with 
, we will have the following equation: 

    

Then, let’s use the vector identity 
    
to expand the above divergence theorem equation, we will then 

get the Green’s first identity as follows: 

Green’s first identity 

    

Implication for gravity – 1 Implication for gravity – 1 

If making some simplifications by setting , and choose U 
such that  that satisfies the Laplacian equation (i.e., U 
is harmonic and its second-order derivative is continuous), then, 
based on Green’s first identity written above, we will have the 
following expression 

    

which can be interpreted as, the normal derivative of a harmonic 
function averages to 0 on a closed surface. 
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Specifically for the case of gravity, considering a gravity field 
in regions of space not occupied by mass, it is associated with a 
potential  which is harmonic. Thus, the above equation can be 
written as follows: 

    

That is, the gravity field has a net zero flux over any closed 
surface in any source-free regions (i.e., regions not occupied by 
sources). This interpretation can be illustrated by the image below. 

Green’s first identity implication for gravity. 

In other words, the normal component of gravity field (or, in 
general, any conservative field) averages to zero over any closed 
surface in source-free regions. 

Implication for gravity – 2 Implication for gravity – 2 

Another interesting consequence of applying Green’s first identity 
to potential field is that, if letting  be harmonic and , then 
we will have 

    

Consider the above equation when  on the surface 
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. Then the R.H.S vanishes, and because  is positive and 
continuous in the region, then . Therefore,  is 
constant. Moreover, because  on the surface and  is 
continuous, the constatn must be 0. Therefore, if  is harmonic 
and continuously differentiable in , and if  vanishes 
everywhere on the surface ,  must also vanish everywhere 
within the volume. 

Furthermore, let  and  be harmonic in R and have identical 
boundary conditions, that is, . The function 

 must be harmonic. But  vanishes on S. 
Based on previous consequence,  must vanish at every 
point in R. Therefore,  and  are identical. Thus, a function 
that is harmonic and continuously differentiable in R is uniquely 
determined by its values on S. 

2.3.2.2 Green’s second identity 

Based on the assumption that functions  and  are continuous 
functions with continuous second-order derivatives, we can start 
from the Green’s first identity 

    

then exchange function  with  to get the function as follows: 

    

If subtracting the above equation from the original first identity, 
we will get the Green’s second identity defined as follows: 
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That is, 

Green’s second identity 

    

Implication for gravity – 1 Implication for gravity – 1 

So how can this identity be related with potential field methods? 
If assuming , then the Green’s second identity can be re-
written as follows: 

    

and assuming  is the potential of some vector field , i.e., 
, then the above equation can be further written as: 

    

In source-free regions, , therefore, we have 
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which implies that, the net flux of gravitational field over a 
surface with source-free equals zero, the same conclusion we 
derived before. 

Implication for gravity – 2 Implication for gravity – 2 

In Green’s second identity, the surface is a closed surface bounding 
the volume. For gravity application, it is a surface bounding the 
mass. Now let’s consider a special surface: an equipotential surfaceequipotential surface. 
Assuming function  as gravity potential, and consider a point 
outside the surface, and  is the distance from . Let’s consider 
what happens when . 

We can substitute  into the second identity, then we will 
have the following: 

   

Recall the two equations defined above, which are 
 and , then the above 

equation’s left-hand side can be simplied as follows: 

    

For the right-hand side, since gravity potential  is constant on 
the equipotential surface, so  can be moved out of the integral; 
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then we can apply the divergence theorem, so that the surface 
integral can be changed to colume integral. Their mathematical 
expressions are as follows: 

    

Now, recall the Laplacian of inverse distance 

    

Thus, the second identity can be written as follows: 

    

If we look carefully on the left-hand side of the above equation, 
it contains the calculation of the gravitational potenital given a 
density distributino, which equals , therefore, we have, 

    

dividing  on both sides, we will have 
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This equation implies that for a set of gravitational field data, 
it can be interpreted by two methods: at any point outside , 
the potential caused by a 3d source inside  is the same as the 
potential caused by a material that is spread over the equipotential 
surface  with a surface density of . 

2.3.2.3 Green’s third identity 

Its derivation begins with second identity 

   

Again, let’s make simplifications by letting  where the 
second identity will then be written as follows 

   

Remembering that  in general case (i.e.,  can 
be zero within the volume). Then the above equation can be re-
written as follows: 
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Moving the second term on the left to the R.H.S., we have 

   

Diving by  on both sides, and expand further, the new 
equation will be 

   

Based on the definition of derivatives, the R.H.S. of the previous 
equation can be re-written as 

   

According to the definition of the Dirac delta function, 
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Through applying the Dirac delta function property, the above 
equation will be the Green’s third identity. For simplicity, we 
assumed the origin to be the point of observation, therefore, we 
will have: 

   

In general, for a continuous function , the Green’s third identity 
is 

Green’s third identity 

50 J IAJIA SUN



   

Understanding Green’s third identity Understanding Green’s third identity 

The first integral on the R.H.S. of the Green’s third identity can 
be understood as the potential due to a volume distribution with 
density , that is, the gravitational potential 

due to a volume density distribution  is 

    

The third integral has the same form as the potential due to 
a surface density distribution  where . That is, the 

gravitational potential due to a surface density distribution 
is 

    

The second integral can be understood as the magmatic 
potential due to a surface distribution of magnetization 

, which is spread over surface , and directed 

normal to . The magnetic potential is 
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In summary, any functionany function with sufficient differentiability can be 
expressed as the sum of three potentials: 

• The potential due to a volume distribution of density 

• The potential due to a surface distribution of density 

• The potential due to a surface distribution of 
magnetization 

In other words, any function with sufficient differentiability is a 
potential! 

Furthermore, if considering the situation when  is harmonic, 
i.e., , then Green’s third identity will become the 
following 

    

This is a representation formula, where a harmonic function can 
be calculated at any point simply from its values and normal 
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derivatives on the boundary. This is the theoretical basis for the 
upward continuation and the equivalent source technique, 
which will be introduced later in this course. 

 

2.4 GRAVITATIONAL POTENTIAL 

2.4.1 NEWTONIAN POTENTIAL 

There are four basic forcesfour basic forces known presently to physics, which are 
strong force, electromagnetic force, weak force, and gravitational 
force. 

• Strong force could hold protons and neutrons together in 
the atomic nucleus and have extremely short range, but a 
hundred times more powerful than electrical forces. 

• Electromagnetic force, for instance, the electrostatic 
force following the Coulomb’s law, could produce the 
everyday phenomenon of static electricity, or lightning 
strike due to sudden electrostatic discharge. Another 

exampl e 
is the magnetic force, generated by a magnet. In a simple 
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experiment setting shown in the figure on the right, if the 
coil wired around the metal is powered with electricity, 
that will generate a magnetic field, which will then make 
this metal becomes serving as a magnet. 

• Weak force accounts for certain kinds of radioactive 
decay. 

• Gravitational force, which is the force that we will focus 
on in this course. Unfortunately, we do not fully 
understand gravity, despite Newton’s law of gravitational 
attraction and Einstein’s general relativity. 

In this course, we will focus on Newton’s law of gravitational 
attraction to discuss the gravitational force. 

2.4.1.1 Gravity attraction 

Issac Newton was an English mathematician, physicist, astronomer, 
theologian and author who lived in the time period of 1642-1726. 
He had made fundamental contributions to classical mechanics, 
optics and calculus, and published the famous Mathematical 
Principle of Natural Philosophy in 1687. In this book, Newton 
formulated the laws of motion and the law of gravitational 
attraction. 

Newton’s law of gravitational attraction 

Newton’s law of gravitational attraction states that two masses would attract each other, 
and this attraction is called gravitational forcegravitational force. The magnitude of the force is proportional 
to each mass and inversely proportional to the square of their distance. 

The simple illustration of Newton’s law of gravitational attraction is 
shown in the figure below. 
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The mutual force between 
the two masses  and  is 
mathematically represented 
as: 

    

   

where  is the distance between two masses, 
 is the universal gravitational 

constant. 
Let us consider  to be a test particle with unit mass (i.e., the 

existence of it doesn’t affect the force caused by mass ). Then the 
gravitational attraction produced by mass  at the location of the 
test particle is 

    

Note  is gone since we have assumed it is a test particle 
with unit mass, and the unit vector  is pointing from  to . 
The minus sign in this equation is necessary because , following 
convention, is directly from the source  to the observation point 

. 
The unit of this gravitational attraction  can be derived from 

the following: 

    

i.e.,  is force divided by mass, therefore it has the unit of 
acceleration, . 

Therefore, the gravitational attraction is also called gravitational 
acceleration, and it is a vector since the gravitational force has a 
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After-class 

Exercises 

Given 

Prove 

*Hint: it is 
easier to do 
the proof in 
spherical 
coordinate. 

direction. Its values vary depending on the measured locations on 
Earth, its conventional standard value is about 9.8 m/s2. 

Once we have proved ourselves after doing  the 
exercise listed on the right box, that 

    
we can interpret and make sense of it since, 

for Earth, its gravitational field lines are all 
pointing to its center from 360o degrees, thus 
there is no rotation, so the curl must be zero. 

That brings us to the concept of the 
irrotational field when we talked about the 
Helmholtz theorem. An irrotational field is a 
vector field in a region if its curl vanishes 
everywhere, i.e., 

    
that is, when the curl of a vector field is zero, 

the field is irrotational. Since the gravitational 
field satisfies this condition, therefore, the 

gravitational field is irrotational. 
Moreover, according to the Helmholtz theorem, the vector 

potential becomes zero. Therefore, 
    
which is a scalar potential, or gravitational potential. 
In brief summary, because , the Gravitational/

Newtonian potential is irrotational and is conservative. It can be 
fully described by a scalar potential , where 
is called gravitational potential, and it can be mathematically 
represented as follows: 

    

which decays as a function of distance . 
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2.4.1.2 Gravitational potential of continuous matter 

For the sake of convenience and robustness, we want to be able 
to calculate the gravitational potential due to any distribution of 
density with any geometries. Thus, we need to apply the Principle 
of Superposition, so that the gravitational potential of a collection 
of masses can be calculated as a sum of the gravitational potentials 
due to each individual mass. 

Similarly, the gravitational field/acceleration, which is a vector, 
of a collection of masses is the vector sum of the gravitational 
acceleration due to each individual mass. 

If we want to calculate the gravitational attraction due to a 
continuous distribution of matter, that is density  varies 
spatially, we can use the principle of superposition, so that the 
continuous distribution of mass  is simply a collection of many 
very small masses. For each small mass, its individual mass can 
be calculated by the product of constant density  of this 
small mass with its volume occupied by the tiny mass , that is, 

    
The gravitational potential due to this single small mass is 

    

Then the potential observed at location  due to all small 
masses can be then calculated by summation of all individual 
potentials, i.e., the integration over the whole volume occupied by 
mass at each point of  within the volume, which is mathematically 
written as follows: 

    

According to Helmholtz theorem, we know that 
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. Thus, in order to calculate gravity, we need to 
calculate 

   

Similarly, following the same procedure, we can calculate 

, i.e., 

    

If we collect the three terms on the left hand side in the above 
three equations into a vector, we get  which is equal to 

. The three integrals on the right hand side in the above 
three equations can also be collapsed into a more compact form. 
Consequently,  we arrive at the following equation: 
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where  is the unit vector in the same direction as the vector . 
Please be noted that the previous derivation of the gravity field 

based on gravitational potential assumes the observation point is 
outside the distribution of mass. What about the potential inside 
the mass? 

If the observation point  is inside the mass, the integrand in 
equation becomes singular and the integral is improper (see P47 in 
Blakely’s book). However, Kellogg (1953) shows that the integral 

    

is convergent for  inside a volume  and is continuous 
throughout  if ,  is bounded and  is piecewise 
continuous. Therefore, both  and  exist and are 
continuous everywhere, both inside and outside the mass if the 
density in the volume is well behaved (Blakely, 1996, p48). In 
addition, Kellogg (1957) also shows that  for 
inside the mass. 

In summary, the following two equations hold true for any 
bounded distribution of piecewise-continuous density: 

    

and 
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2.4.1.3 Poisson’s equation 

So far, we can represent the gravitational potential in two math 
equations, one is based on Helmholtz theorem, we have 
mathematically derived at 

    

another equation is due to Newton’s law of gravitational 
attraction, which is written as 

    

By equalling those two equations, we will arrive at the Poisson’s 
equation, which is expressed as follows: 

    
This is valid for observation point both inside and outside the 

mass distribution. 
A special case of Poisson’s equation is Laplace’s equation, which 

is denoted as below: 
    
which is valid in regions of space not occupied by mass. For most 

of the geophysical potential field data acquisition, we are dealing 
with this equation, since the data measurement region is at the 
source-free region, for example, airborne data acquisition, satellite 
data collection, etc. 

Brief Summary 
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• Gravitational potential: 

• Gravitational field/acceleration: 

• Poisson’s equation 

2.4.2 EXAMPLES OF GRAVITY DUE TO SIMPLE OBJECTS 

Before delving into the details of deriving the gravitational 
response due to simple geometric objects, it is important to note 
that the following derivations are much simplified due to having to 
deal with the problem in spherical coordinates. Thus, firstly let us 
recap on the concept of the spherical coordinate system. 

2.4.2.1. Spherical Coordinate System 2.4.2.1. Spherical Coordinate System 

Normally, most problems are done in the Cartesian coordinate 
system (x, y, z). However, to simplify the integration in our 
derivation, we use the spherical coordinate system instead. The 
following figure gives a visualization of the coordinate system. A 
point in space can be expressed as the point (r, , ), where r is the 
distance between the point and the origin,  is the declination of 
the line connecting the point to the origin, and  is the inclination 
(angle made by the line that crosses the origin with the horizontal). 
With simple trigonometrical calculations, we can find that the small 
differential area  can be expressed as  and 
the differential volume as 
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Spherical coordinate system 

2.4.2.2. Gravity due to Spherical Shell 2.4.2.2. Gravity due to Spherical Shell 

First, let us consider a thin-walled, spherical shell with radius  and 
uniform surface density  (think about those hollow colorful plastic 
balls in a kids ball pit, but with much much thinner skin). The ball is 
perfectly symmetric, and thus we can use this property to form the 
problem in a spherical coordinate system. We will derive the gravity 
in point P which is outside of the shell with a distance of R from the 
shell (r in the figure is the distance of any point in the shell to P). 
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A spherical shell 

Recall that the gravitational potential equation from the previous 
section can be expressed as such: 

    

This is true for a mass distribution that spreads over a 
vanishingly thin surface, where  has a unit of mass per unit area (

 in SI). 
Transforming the above equation to our spherical coordinate 

system (that is, substituting  and assuming 
that  is constant at the differential area), the above 
equation can also be expressed as: 
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With simple trigonometrical calculations, we can find that 

Since the following relation is true: 

    

    
That means we can further simplify the equation as: 

    

With that in mind, we can substitute the integral bounds in terms 
of the radius, with  and  being the minimum and the 
maximum value of  respectively, thus turning our gravity potential 
equation to: 

    

Thus if we evaluate the integral, we can get the gravity potential 
at point P due to a spherical shell, if P is outside the shell: 
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Since  where M is mass,  then the above equation 
can also be expressed as: 

    

Notice that this is the same gravity potential from a point source. 
In other words: 

“Gravity potential at “Gravity potential at any point outside a uniform shellany point outside a uniform shell  is the same as is the same as 
the potential of a the potential of a point source located at the center of the shellpoint source located at the center of the shell  with with 

mass equal to the total mass of the shell” mass equal to the total mass of the shell” 
We can conclude the same with the gravitational attraction (

), thus the gravitational attraction 
at any point outside a uniform shell is the same as the 
attraction of a point mass. This can be easily verified with 

This emphasize the non-uniqueness problem in gravity, since this 
implies that the same gravity observation can be form by either 
point source or spherical shell equally well. 

Meanwhile, if point P is inside the shell, then the above derivation 
still holds true but with a small difference in the bounds in the 
integral, which is: 
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In this case, the gravitational potential is constant 
everywhere inside a uniform shell. Thus the gravitational 
attraction is: 

    

Thus, the above derivations can be simplified in the following 
summary: 

Gravity due to a uniform spherical shell 

• If P is outside the shell, then the following holds true ( ): 

◦ Gravity potential: 

◦ Gravitational attraction: 

•  If P is inside the shell, then the following holds true: 

◦ Gravity potential: 

◦ Gravitational attraction: 
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A visual summary of the gravity potential (top) and 
gravity acceleration (bottom) due to a spherical shell 
in terms of R (distance) 

2.4.2.2. Gravity due to a Uniform Solid Sphere 2.4.2.2. Gravity due to a Uniform Solid Sphere 

For P outside the sphere, we can consider the sphere as a collection 
of concentric, thin-walled shells with radii ranging from 0 to a (think 
of an infinite matryoshka, Russian nested doll, but instead it’s 
spherical and the skin are much more thin). Thus, we can apply the 
superposition principle in this case. In other words: 

“The potential of a solid sphere at any location outside the sphere is “The potential of a solid sphere at any location outside the sphere is 
the same as a point mass at the center of the sphere with mass equal the same as a point mass at the center of the sphere with mass equal 

to the total mass of the sphere.” to the total mass of the sphere.” 
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The derivation in the case of P being inside the sphere requires a 
bit more understanding. 

Suppose that P is in a narrow, spherical cavity of radius r and 
thickness  indicated in the following figure: 

Solid spherical sphere 

 
 
The potential at P is due to two parts: 

1. The inner part of the sphere with radius less that 

2. The outer part of the sphere with radius greater than 

Let’s first looks at the inner part (first part). Since in the figure 
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above, P is outside of the first part, we can define the gravitational 
potential as: 

    

Now, for the outer part (second part), the derivation gets more 
complex, as we can  express it as such: 

    

Adding the two parts together, while setting the thickness 
: 

    

Thus, the gravitational attraction can be expressed as: 

    

Thus, the above derivation can be summarized as: 
 

Gravity due to a uniform solid sphere 

• If P is outside the sphere, then the following holds true ( ): 

◦ Gravity potential: 

◦ Gravitational attraction: 

◦ Laplacian: 

•  If P is inside the sphere, then the following holds true: 

◦ Gravity potential: 
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◦ Gravitational attraction: 

◦ Laplacian: 

2.4.3 Green’s Equivalent Layer 

In practice, we don’t normally consider our objects as uniform 
spheres. Thus, the previous section where we derived the 
gravitational attraction of the simple objects aren’t normally used 
in geophysics application. However, it does help us understand the 
concept of Green’s equivalent layer. 

Recall Green’s second identity in section 2.3, which is: 

   

This can in turn be further simplified as: 

    

 
The above equation implies that at any point outside of surface 

S, the potential caused by a source inside S is the same as the 
potential caused by a material that is spread over the equipotential 
surface S with a surface density of . Thus, the reverse is 
also true: 

“At any point outside S, the potential caused by a 3D density “At any point outside S, the potential caused by a 3D density 
distribution is indistinguishable from the potential caused by a thin distribution is indistinguishable from the potential caused by a thin 
layer of mass spread over any of its equipotential surface S with a layer of mass spread over any of its equipotential surface S with a 

surface density of surface density of .” 
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2.4.4 The Earth’s gravitational field 

2.4.4.1 Centrifugal force and gravitational force 2.4.4.1 Centrifugal force and gravitational force 

If Earth is a stationary non-rotating spherical body with uniform 
density distribution, the strength of gravitation acceleration would 
be constant over the surface. However, the Earth is rotating. The 
centrifugal force  is created by the rotation of Earth and the 
gravitational force  is created from non-rotating Earth. Thus, the 
gravitational force  and the centrifugal force  combine to yield 
the observed gravitational force . Consequently, the Earth’s 
gravity field decreases from poles to equator. 
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LaFehr and Nabighian, 2012, P10.  is 
centrifugal force.  is gravitational force.  is 
observed gravitational force. 

2.4.4.2 Total gravity and theoretical gravity 2.4.4.2 Total gravity and theoretical gravity 

The Earth’s gravity is due to both the mass of the Earth and the 
centrifugal force caused by Earth’s rotation, so the total potential 
is the sum of its self-gravitational potential  and its rotational 
potential . The equation of total gravity potential is below: 

    
where, 

    

 is angular velocity ( ),  is the axial 
radius and  is latitude. 
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Theoretical gravity takes into account the effect of Earth’s spin on 
gravity. After gravity survey, the first thing we need to do is data 
processing. We need to remove the effects of general background 
(including the effect of Earth’s rotation) by subtracting theoretical 
gravity from measurements. 

    

    

where,  is gravitational attraction at equator. 
Note that the theoretical gravity is the gravity due to a rotating 

and uniformly dense spheroid (i.e., an idealized and overly 
simplified Earth). 

2.4.4.3 The shape of the Earth 2.4.4.3 The shape of the Earth 

As the Earth spins, the centrifugal force causes the Earth to bulge 
at the equator. So the Earth has a spheroidal shape. Spheroid is the 
surface obtained by rotating an ellipse about one of its principal 
axes. Spheroid is therefore an ellipsoid with two equal semi-axes. It 
has circular symmetry. 
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Spheroids with vertical rotational axes 

Therefore, the Earth is an oblate spheroid shape (seeing figure 
below) and the difference between the major axis and the minor 
axis around  km. 

Oblate spheroid planet Earth 
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Shape and axes length of the Earth 

2.4.4.4 Reference ellipsoids and geodetic datums 2.4.4.4 Reference ellipsoids and geodetic datums 

Geodesists have adopted an ellipsoid model to determine latitude 
and longitude coordinates. There are a few such ellipsoid models, 
also called reference ellipsoids. Different ellipsoid models result in 
different geodetic datums. 
A geodetic datum uniquely defines all locations on Earth with 
coordinates. Datums precisely specify each location on Earth’s 
surface in latitude and longitude. NAD27, NAD83, and WGS84 are 
geodetic systems. NAD27 uses the Clarke Ellipsoid of 1866. NAD83 
is the most current datum being used in North America. It uses 
reference ellipsoid GRS80. It forms the basis of coordinates of all 
horizontal positions for Canada and the US. WGS84 is the reference 
coordinate system used by GPS. It uses the WGS84 ellipsoid. 

Rotation plays a significant role in the Earth. Here, we briefly 
summarize the rotation: 

(a) Rotation causes centrifugal forces, which causes gravity to 
decrease from poles to the equator. 

(b) Rotation causes a difference between polar and equatorial 
radii, which yields a larger gravitational attraction at the poles 
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compared with the equator (because of the smaller distance to the 
center). 

(c) The combined centrifugal force and flattening effect results 
in a difference of approximately 5.3 mgal between gravity 
measurements at poles and equator. 

2.4.5 Geoid 

Before talking about geoid, let’s recall the relevant details about the 
equipotential surface. 

An equipotential surface is a surface on which the potential 
remains constant. That is: 

    
Suppose  is a unit vector that is tangential to an equipotential 

surface of , then 

    

2.4.5.1 Basic concepts of geoid 2.4.5.1 Basic concepts of geoid 

(a) Geoid is an equipotential surface. 
(b) The gravitational field is the norm to the geoid and defines the 

vertical direction at any location. 
(c) Geoid is the equipotential surface that coincides with the 

mean ocean surface (or mean sea level) (assuming no tides, ocean 
currents, winds, etc.) and extends through the continents. 

(d) The geoid at any point on land can be thought of as the level 
of water in an imaginary canal connected at each end with the 
ocean. 

Here is a question. Why the mean ocean surface is an 
equipotential surface for the Earth’s gravitational field? 
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The figure above is the ocean. If the ocean is not an equipotential 
surface, there will be a horizontal component of the Earth’s 
gravitational field acting on the ocean water, which means gravity 
will move the ocean water. But in reality, ocean water is stationary 
(assuming no tides, winds). This phenomenon explains why the 
ocean is the equipotential surface. 

Geoid is closely related to a spheroid. If the spheroid is rotating 
earth with uniform density, then the geoid and spheroid will 
coincide. However, we all know that the density within the Earth 
changes spatially. So, depending on the density distribution, the 
geoid will be higher or lower than the reference ellipsoid (shown 
in the figure below). In the figure below, we noticed that the ocean 
surface (number ) is higher or lower than the reference ellipsoid 
(green dash line, the number ). For a local excess mass, geoid will 
be higher than the spheroid (i.e., warp outward) in order to keep 
the potential constant. 
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Number  is the ocean surface. Number , green dash line, is the reference 
ellipsoid. Number  is local plumb line. Number  Continent, we can regard 
this as rock. Number  is geoid. 

2.4.5.2 Geoid undulations 2.4.5.2 Geoid undulations 

Geoid undulations are the differences between geoid and ellipsoid. 
Seeing figure below: 

The relationship among geoid, ellipsoid, topography, and undulation. 
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Here are some examples of geoid undulations. All of the figures 
have the same trend. The dark blue color is the area where geoid is 
lower than ellipsoid, which means something has a low density in 
this area. In comparison, red color is the area where geoid is higher 
than ellipsoid, which means the high density underneath this area. 

 
The heights obtained from GPS are typically ellipsoid height, 

which means the distance between point of interest and ellipsoid. 
The height displayed on most consumer handheld GPS receiver 
is, however, the orthometric height, height above mean sea level 
(LaFehr and Nabighian, 2012, P12s). 
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Here is an equation to compute orthometric height: 
    

 is orthometric height means the distance between the 
observation point to the geoid surface.  is ellipsoidal height 
means the local plumb distance from the observation point to 
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ellipsoid. The ellipsoidal height is currently obtained from a 
handheld GPS receiver.  is the geoid height. The geoid height is 
negative when the geoid surface is lower than ellipsoid, and geoid 
height is positive when the geoid surface is higher than ellipsoid. 

 

2.5 GRAVITATIONAL POTENTIAL & GRAVITY 
GRADIOMETRY 

2.5.1 A FEW GRAVITY EXAMPLES 

2.5.1.1 Unit of gravity attraction/acceleration 

(a). In the International System ( ), mass has a unit of kilograms (
), distance is meters ( ). 

(b). Gravitational acceleration  has a unit of . This is a very 
large unit to use. So, we use  instead. The unit 
is also refereed to as  (short for Galileo). 

(c). Unit of gravitational constant  is . 

Derivation 

    

If  has a unit of , and  has a unit of , and  has a unit of . The unit of two sides 

is: 

    

So, we obtain  is  . The unit of  is 
. 
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(d).  is a more appropriate unit to use, but even  is too 
large for geoscience applications, so we currently use . 

where, . 
(e). Sometimes, even  is too large, in such cases, we use 

. 
where, . 
(g). Microgravity measures minute change in the earth’s 

gravitational filed, which can be used for time-lapse 
hydrogeophysical studies, aquifer recharge and 
depletion, fluid monitoring in a petroleum 
reservoir, fluid flow in geothermal reservoirs,
underground cavities. 

Microgravity 

Not to be confused with microgravity experienced by astronauts in space, where 
microgravity is the condition in which people or objects appear to be weightless. 
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2.5.1.2 Examples 

Example 
 is most common used unit in gravity measures. For global 

scale, the gravity anomalies is hundreds of . Seeing the 
figure below, the total range of color bar is . 

Earth’s gravity field anomalies (mGal). 

Example 
The entire range of bouguer gravity anomalies is hundreds of 

, this range is widely used in geophysics, and we rarely 
use the . In gravity data processing, we firstly have to correct 
bouguer anomalies that will remove all effects of mountain and 
terrain. The warm color reflects high density, the cold color reflects 
low density. The  value here roughly corresponds to average 
density. In the New Jersey area, the highest feature is characterized 
as a Northeast to Southwest anomalies caused by basalt intrusion. 
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Bouguer gravity anomalies of New Jersey 

Example 
The highest anomalies are closely related to mid continent rift, 

which means something subsurface has really high density. 
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Bouguer gravity over Northeast Iowa. 

Example 
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Bouguer anomaly over Texas (left) and bouguer anomaly over 
America. 

Example 
The figure below (left) is reduced-to-pole total field aeromagnetic 

anomalies. The figure below (right) is bouguer ground gravity data. 
The range of color bar for bouguer gravity is around , which is 
currently used in mineral exploration. 
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Example 
The figure below (left) is observed gravity data, the figure below 

(right) is geological model built based on drill hole data. 

Example 
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Example 
Time-lapsed gravity measure can be used to monitor fluid flow 

subsurface. 

Example 
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CG-5 is used to measure gravity anomaly in field camp. 

2.5.2 GRAVITY GRADIOMETRY 

2.5.2.1 Basic Concepts of Gravity Gradiometry 

Gravity gradiometry is defined as a measure of the spatial 
changes in gravitational acceleration g. In order to better 
understand gravity gradiometry, we must return to the concept 
of gravitational acceleration being a vector field. As a vector,  g is 
composed of 3 components: gx, gy, and gz. Normally, the influence 
of the gx and gy components of gravity are minuscule and 
commonly disregarded in gravity surveys as most gravimeters 
measure gravity along the gz component. A spatial change of gz in 
the x-direction is defined as  which measures how fast 

gz changes in the x-direction.  Similarly,  and  describe the 

spatial change of gz in the y-direction and z-direction. 

CHAPTER 2: POTENTIAL FIELD THEORY 89



2.5.2.2 Gravity Gradiometry Tensor 

The spatial change relationships listed above for gz also apply to 
gx and gy, resulting in 9 components that can be organized into the 
following tensor: 

    

This can also be expressed in the simpler form of 

    
Recall that gravity is the gradient of gravitational potential: 

. Therefore, the gravity gradient is the second order 
derivative of the gravitational potential and can be expressed as 
the following: 

90 J IAJIA SUN



    

While the gravity gradient tensor may look complex with 9 
components, there are a few important properties of gravitational 
potential that simplify the tensor down to only 5 independent 
components. 

• Gravitational potential is well-behaved outside the source 
region and the tensor is therefore symmetric: 

    

• The potential is harmonic outside the source region, 
meaning that the tensor has zero trace : 

    

As a reminder, the trace of a matrix is the sum of its elements 
along the main diagonal. 

One example of the five independent components of the gravity 
gradient tensor is as follows:  and 

2.5.2.3 Units of Gravity Gradients 

In order to find the units of gravity gradient measurements, we 
must first start with the units of gravity which is . The gravity 
gradient measures the spatial change in gravity over a short 
distance, meaning that it has a unit of  in SI units, or also 

 and . These units are normally too large 
to use, so units of Eotvos or Eö are used instead, with 1 eotvos 
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=  = 0.1 mGal/km = 0.1  Gal/m. This is an extremely 
sensitive unit of measurement! 

2.5.2.4 Calculating Gravity Gradient 

In order to find the gravity gradient, we must first start with the 
equation of gravity due to a point source: 

    

Recall that 
The gravity gradient of a point source can therefore be 

represented as: 

    

In the general case, gravity gradient can be expressed as: 

    

As an example, we will now take a look at the equation for gravity 
gradient at : 

    

Additionally,  is represented below: 

    

Notes: 
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We will see  again later in regards to the magnetic field due to a small 

current loop! 
Additionally, T and G are interchangeable representations of gravity gradient. 

2.5.2.4 Examples 

Example 
The image below is of the gravity and gravity gradient responses 

to an anomaly in the subsurface.  is the gravity response of the 
body, while all components of  represent the gravity gradient 
response. Notice that  is easier to interpret compared to the 
other components of the gravity gradient. 
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Synthetic Gravity Gradient Data. The gravity gradient data is in units 
of Eotvos and the gravity data is in units of 

Example 
Vertical gravity and gravity gradient signals from a point source 

buried at 1km depth. While the two signals do not share the same 
units, notice that the responses of  and  are fairly similar, 
although the signal of  is narrower and better constrained over 
the anomaly. 

Example 
Notice the difference between the collected Bouguer gravity and 

 component gravity gradient data collected over the same 
region. The boundaries of different anomalies in  are better 
defined than in the Bouguer gravity data. AGG stands for Airborne 
Gravity Gradiometry. 
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Example 
Falcon gravity gradient map ( ) of the western Eyasi 

rift basin. A 3D model of the area was produced by combining 
the responses from the Falcon AGG and airborne magnetic data. 
Basement structural features and sediment depo-centers are easily 
identified in the model. 
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Example 
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Example 
Both figures below are gravity gradiometry surveys conducted 

over the Vinton Salt dome. 
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Example 
Another gravity gradiometry figure of the Vinton salt dome, but 

note the error made with the units. 
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2.6. MAGNETIC POTENTIAL 

2.6.1. BIOT-SAVART LAW 

From classical electromagnetism, we know that electricity and 
magnetism are inter-related. For example, if we have a wire of 
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current, it will generate a magnetic field, as illustrated in the figure 

below.
In order to calculate the current in the wire which induced the 

magnetism, we can use Biot-Savart law, which is mathematically 
written as follows: 

    

Integrating around a loop  yields the following expression: 

    

Where  is the magnetic constant permeability of the vacuum 
(free space),  is the “current element” directed along the current 
in the wire, the unit vector  is pointing from the current element 
towards the observation point where the magnetic field  is to be 
calculated. Magnetic field vector  induced at observation location 
P due to the steady current in the wire is at right angles to both 
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and , and its direction can be determined through the Right-Hand 
Rule. 

The magnetic field of a loop of current can be called as 

• Magnetic induction 

• Magnetic flux density 

• Magnetic field 

2.6.1.1.1 Right-hand rule 2.6.1.1.1 Right-hand rule 

The directions of the current and magnetism can be represented 
by our right hand. As shown in the figure, we can point the right 
thumb in the direction of the current, then curl your figures to 
get the magnetic field directions.

2.6.1.1.2 Magnetic field unit 2.6.1.1.2 Magnetic field unit 

The SI unit for the magnetic field  is Tesla denoted as . 
However, this unit is too large to represent the actual field 
measurements. Therefore, we often use nanotesla ( ) instead, 
where 
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The Iowa magnetic anomaly map is shown here to demonstrate 

the value range of the measured magnetic field data, which is 
about 1300 nT for a regional-scale study area. If in the explorational 
scale, the range value would be even smaller.

2.6.1.1.3 Implications from Helmholtz Theorem 2.6.1.1.3 Implications from Helmholtz Theorem 

Before we move on to the magnetic potentials, let us be reminded 
about the consequences of the Helmholtz theorem. We have 
learned that a vector field is a solenoidal field in a region if its 
divergence vanishes everywhere, i.e., 

    
According to the Helmholtz theorem, the scalar potential 

becomes zero. Therefore, 
    
An example of the solenoidal field is the static magnetic field, i.e., 

a magnetic field that does not change with time. As illustrated in the 
(figure), magnetic field lines do not emanate from or converge to 
any point, and since there is no source, these field lines are closed 

CHAPTER 2: POTENTIAL FIELD THEORY 103



loops. Therefore, its divergence is zero, and magnetic field  is 
solenoidal 

    
This statement is true everywhere, even within magnetic media. 
If applying divergence theorem, we will have an equation as 

follows: 

    

It implies that the net magnetic flux over any closed surface is 
always zero. And there are no net sources (or sinks) anywhere in 
the space. Therefore, magnetic monopole does not exist. These 
implications are demonstrated in the figure below, where all 
magnetic field lines entering and exiting the shaded area no matter 
how many field lines there are. Thus, there is no magnetic volume.

Furthermore, according to Helmholtz theorem, we will then have 
    
Where  is a vector potential and always exists. 
However, under certain circumstances, the scalar potential for 

the magnetic field also exists at the same time (note that vector 
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potential still always exists). In order to explain this phenomenon, 
we need to review the Ampere’s Law. 

2.6.1.2. Ampere’s Law 

In the previous section, you see Biot-Savart law that gives you the 
equation of the magnetic field (B), which is the following: 

    

Ampere’s law gives the following relation between magnetic 
field B and current density j: 

    
Both the Biot-Savart and Ampere’s law essentially expresses the 

same concept but in different forms. Both equations tell us that if 
you have current, then you will have a magnetic field (and vice versa). 

To learn more about how to derive Ampere’s law from Biot-
Savart law, please refer to Page 229-233 in David J. Griffith’s book 
(Introduction to Electrodynamics, Fourth Edition). 

Note that j in Ampere’s law refers to the total current density, 
which consists of three parts: free current( ), bound current ( ), 
and magnetization current ( ). The division between the current 
densities are not so relevant for this chapter, but if you wish to 
learn more about this topic, you can do so through this link. 

 

Different types of current density 

However, a question arises from Ampere’s law, what if there is no 
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current?  Putting it on the perspective of Ampere’s law, if there is 
no current in the region of investigation, then this holds true: 

    
This implies that the divergence of the magnetic field, and thus B 

is irrotational. Recall Helmholtz theorem. If B is irrotational, then 
that means there exists a scalar potential V that satisfies 

. 
The above equation is only true if the region of study does not 

have currents. In many geophysical situations, electrical currents 
are negligible in regions where the magnetic field is measured. 
Therefore, in general, the scalar potential exists outside of 
magnetic materials.  This is good news for geophysics applications 
because we do not have to worry about dealing with vector 
potentials (which is more complicated). We just need to derive the 
scalar potential to get B! This can be done by deriving the scalar 
potential V and then taking the negative gradient ( ). 

2.6.2. MAGNETIC FIELD DUE TO THE MAGNETIC DIPOLE 

In this section, we will talk more about magnetic dipoles and how it 
can help us find the scalar potential of the magnetic field. 

2.6.2.1 Magnetic Field due to a Small Loop 

When we talk about the magnetic field due to a small loop, we are 
talking about the magnetic field outside of the loop, and therefore 
the scalar potential exists. The basic strategy, in this case, is to 
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derive the scalar potential first. 

The potential change caused by moving the test particle Q along 
with the line segment dl’ is: 

    
where B is the magnetic field due to the loop. Recall Biot-Savart 

law: 

    

Substituting B from Biot-Savart can give us: 

    

Where  is a constant and can be moved inside the integral. 
Also, use the vector identity . 
Thus, the equation becomes: 

    

We introduce the concept of solid angle( ), which is the solid 
angle subtended at P by the entire ribbon of wire. In geometry, a 
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solid angle is a measure of the amount of the field of view from 
some particular point that a given object covers. That is, it is a 
measure of how large the object appears to an observer looking 
from that point. The point from which the object is viewed is called 
the apex of the solid angle, and the object is said to subtend its 
solid angle from that point. 

Thus, the equation can then be rewritten into: 

    

If we assume that the loop is very small in diameter compared to 
r, we do not need to use the integral. Otherwise, we would need to 
use the integrals for the solid angle. Thus, with this assumption, the 
following equation for the magnetic scalar potential due to a small 
loop can be rewritten as: 

    

Where  is the area of the loop, and  is the normal vector of 
that area. 

Now, let us define the dipole moment (a vector),mathematically 
expressed as such: 

    

 
The equation for the scalar potential in terms of dipole moment 

(m) is then: 
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Thus the magnetic scalar potential  is: 

    

The above equation implies that the function decays as the square 
of distance. Recall that gravity field also decays as the function of 
square of distance (1/ ), while the gravitational potential decays 
as a function of distance (1/ ). This means, given a fixed dipole 
moment, the potential value depends on the distance and . The 
potential is positive when the angle between m and  is smaller 
than , and negative when the angle is larger than . 

The following pictures will help you understand the signs of the 
potential field value better. Suppose the current loop is placed in 
the middle (origin) of the following picture and the dipole moment 
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is pointing to the North. Then if you place your point P in any of 
the regions, the color of the region in the picture below tells you 
the sign of potential due to the magnetic dipole in point P. In the 
picture, red indicates more positive values and blue indicates more 
negative values. 

Red is more positive and blue is more negative 

From the above picture, we can see that: 

• V(P) is positive(+) if the angle between m and  is <90 
degrees. 

• V(P) is negative(-) if the angle between m and  is >90 
degrees. 

• V(P) is zero(0) if the angle between m and  is 90 
degrees. 

For example, we can see that the smallest potential value is 
achieved when the angle is between m and  is  (the most 
negative you can get). 
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Test your understanding 

From the picture below, where the color bar represents potential, can you tell where the 
direction of the dipole moment (m) is? 

 

2.6.2.1 Depth Estimation with Magnetic Dipoles 

Suppose a magnetic dipole is buried underground, and you are 
tasked to figure out the depth of it. We can do so by measuring the 
field response. 
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For example, in the above figure, we have a magnetic dipole buried 
underground and oriented downwards such that the magnetic field 
lines are oriented vertically. Suppose the blue triangles represent 
the observation location, which measurements are recorded in the 
Bz graph above it. The interaction between the field lines that hits 
the observation location (blue triangle) with the direction of the 
positive Z axis (pointing downwards) is what is recorded in the Bz 
graph. For example, the observation station on the left-most side 
has the field line pointing approximately upwards, and the positive 
Z axis is pointing downwards. Adding the two directions will lead to 
having a negative reading in Bz. There are two points in the above 
figure where the field lines are perfectly orthogonal (the two blue 
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triangles next to the middle triangle) with the positive Z-axis, and 
thus the measurement of Bz is 0. Lastly, the observation right in the 
middle of the dipole experiences the most positive Bz because the 
field lines are in the same direction as the positive Z-axis. This leads 
to the profile we see in the graph. 

It turns out the distance between the zero-crossing in the Bz 
graph is proportional to the depth of the dipole, specifically, the 
distance between the two zero-crossing is proportional to 
where  is the depth of the dipole. 

Similarly, if we have a dipole oriented in the horizontal direction 
(so the field lines are mostly pointing horizontally), we can find the 
same response between the positive x axis with the field lines to 
create the graph for Bx. In this case, the distance between the zero-
crossings are exactly the same as , where z is the depth of 
the horizontally-oriented dipole. 

Below are other orientation of the dipoles and the relation 
between the zero-crossing in the graph with the depth (z) of the 
magnetic dipole. 

 

The different responses of Bx ( ) and Bz ( ) from different orientation 
of the magnetic dipole (two connected circles below the surface) 

 
The above figure tells us that the broadness of the contours and 

profiles depends on the depth of the dipole ad provides a way 
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of estimating the depth to the source. Please note that the above 
approximation is only true when we have a single magnetic dipole 
underground. There will be more complicated calculations involved 
for more complex cases. However, this approximation is still useful 
in certain cases. For example, even today we approximate the 
magnetic response from a seamount is approximately that of a 
single dipole moment. The shape of the anomaly depends on the 
shape of the seamount and the direction of the mean 
magnetization vector. 

2.7. MAGNETIZATION 

We have learned and derived the magnetic field due to a magnetic 
dipole (i.e., a vanishingly small loop of electrical current). However, 
this is not very realistic compared to real-life problems. Thus the 
question is asked: How about the magnetic field due to a volume 
of magnetic materials? You might have guessed it already, but 
the field due to a volume of magnetic material is the sum of the 
magnetic effects of all dipoles within that volume. 

We define magnetization as the amount of dipoles within a certain 
volume.  Mathematically expressed as: 

    

Thus, magnetization is the vector sum of all individual dipole 
moments ( )  divided by the volume (V). 
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From the above equation, we can tell that the unit of magnetization 
is Ampere per meters (A/m). 

2.7.1 MAGNETIC FIELD DUE TO A VOLUME 

Before we sum the magnetic effects of all dipoles, we need to figure 
out the magnetic effects of only a tiny portion of the volume.  So 
the question is: what is the magnetic field due to a small volume 
(dv)? 

First, recall that the magnetic potential due to small dipole  at a 
certain point (P) is the following: 

    

Recall also that the equation for magnetization is: 

    

Thus, rearranging the equation, we can see that the amount 
of dipoles(m) within a certain small volume (dV), is equivalent to 
M.dV. 

    
That means, the magnetic potential due to a tiny volume is: 

    

Note the difference between dV and dv! Remember that dV is 
the magnetic potential due to a tiny volume and dv is the tiny 
volume of magnetic material. 

What about magnetic potential due to big volume?  Since a big 
volume consists of many tiny volumes, then we can sum/integrate 
them to obtain: 
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Where Q is the position of dv, and P is the position of 
observation. 

Keep in mind the following identity: 

    

where: 

    

 
With the above identity, we can then rearrange the equation as: 

    

Thus, the magnetic field due to a big volume would be: 

    

2.7.2 MAGNETIC FIELD INTENSITY 

2.7.2.1 Total Current Density 

Recall Ampere’s law which is: 
    
where j is the total current density consisting of free current (
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), bound current ( ), and magnetization current ( ). Thus, 
with the different parts of total current density, Ampere’s Law can 
also be expressed as: 

    

Each part has the following meaning: 

• : macroscopic currents (e.g., free current caused by 
moving charges) 

• : magnetization currents due to the motion of 
electrons in atoms 

• : displacement currents (can be ignored for most 
geophysical applications) 

Knowing so, we can also write Ampere’s law as: 
    

2.7.2.2 Magnetization Current 

When exposed to an external magnetic field, the dipoles will align 
themselves accordingly. If the dipoles are all parallel to each 
other and have identical magnitude, circulating current of one 
dipole will cancel the current of its neighboring 
dipoles, resulting in a net surface current. If the magnetization is 
not uniform, a volume current will exist where circulating elemental 
currents fail to cancel. 

To understand this concept, take a look at the Figure below. 
The dipoles are all oriented in the same direction and are uniform 
throughout the volume. The current inside the volume will cancel 
each other out, and thus leaving the outside volume to have a 
surface current (pictured ont he right), which in this case is counter-
clockwise. 
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With simple mathematical arrangements: 
    
We move  to the left hand side: 

    

Then, we move M to the left hand side: 

    

We can then define the following: 
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To form the following: 

    

The unit of H is the same as M,  and therefore it’s A/m. We call H 
as the magnetic field intensity. 

2.7.2.3 Magnetization Field Intensity 

As previously stated, the magnetic field intensity (H) is 
mathematically defined as: 

    

Magnetic field intensity is a hybrid vector with two components 
with quite different physical meanings. 

The major difference between B (magnetic induction) and H 
(magnetic field intensity) is that the former originates from both 
free currents (macroscopic) and magnetization currents (atomic), 
as summarized by the following equation 

    
whereas the latter arises only from true currents, as shown by 

the following equation. 
    
Also, be noted that magnetization M is subtracted from the 

definition  of H. In other words, magnetization currents are 
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excluded from the definition of magnetic field intensity, leaving 
behind only macroscopic currents. 

Therefore, we can understand H as magnetic induction (except 
for a factor ) minus the effects of magnetization (M). 

Outside of the magnetic materials, It holds true that 
. 

2.7.2.4 Magnetic scalar potential 

According to Amphere’s law, 
    
In the absence of such currents, we have: 
    
Thus a scalar potential exists such that: 
    

2.7.2.5 Magnetized Materials 

Magnetic materials can be magnetized in the presence of an 
external magnetic field. What we mean by magnetized is that 
the dipole moments are aligned instead of randomly distributed. 
Mathematically this means: 

    

In the following picture, we see the difference between a non-
magnetized (a) and magnetized (b) material. In the non-magnetized 
material, the arrows representing the dipoles are randomly 
oriented, and both H and M are zero. On the other hand, 
magnetized materials have the dipoles generally pointing on the 
same direction. In this case, the material is magnetized by an 
external field H pointing to the right, and M (which is a product of a 
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material constant  and H) is also pointing to the right. This leads to 
the magnetic dipoles ( ) pointing generally also to the right. 

 

 

2.7.3 INDUCED MAGNETIZATION 

In the section below, we will cover induced magnetization and a 
couple of the properties associated with it. A couple key concepts 
that must be understood first include when a volume of magnetic 
materials acquires a non-zero net magnetization due to an external 
field, this is called induced magnetization. The external magnetic 
field applying the magnetization is called the inducing field. 

2.7.3.1 Magnetic Susceptibility 

When an inducing magnetic field (H) is applied to a material, 
the resulting induced magnetization (M) an be determined based 
the material’s magnetic susceptibility (  or ). Magnetic 
susceptibility defines how easily a material (e.g., a rock) becomes 
magnetized under an inducing field and is unitless. The following 
equation describes this relationship: 
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. 
However, this relationship is only true for low-amplitude inducing 

fields such as the Earth’s magnetic field. 
From the relationship above, it’s clear that materials with high 

magnetic susceptibilities will also generate strong magnetic signals. 
In a geological context, magnetite-rich rocks are usually the main 
source of magnetic signals. However, in engineering buried metal 
objects such as water pipes are usually the sources for magnetic 
signatures. It is important to note that magnetic susceptibility can 
be positive or negative, and this will be covered in a following 
section on the types of magnetization. 

A figure showing the range of magnetic susceptibility values of a couple 
different materials. https://www.eoas.ubc.ca/ubcgif/iag/foundations/
properties/magsuscept.htm 

Earth’s Magnetic Field 

https://gpg.geosci.xyz/content/magnetics/magnetics_physical_property.html 
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• The Earth’s magnetic field is an inducing field 

• Earth’s magnetic field is not uniform and will vary depending on location 

• Objects will get magnetized differently depending upon where it is situated 

• For example, the magnetic signals generated by a steel drum buried at the 
North pole will be very different compared to an equivalent drum buried at the 
equator. 

Geologic Relationships of Magnetic Susceptibility 

Blakely, 1996, p90 

• In general, mafic rocks are more magnetic than silicic rocks 

◦ Basalts are usually more magnetic than rhyolites 

◦ Gabbros are usually more magnetic than granites 

• Extrusive rocks generally have higher remanent magnetization and lower 
magnetic susceptibility than an intrusive rock of the same composition 

• Sedimentary and metamorphic rocks often have low remanent 
magnetizations and magnetic susceptibilities 

 

2.7.3.2 Magnetic Permeability 2.7.3.2 Magnetic Permeability 

Magnetic permeability  describes the ease at which magnetic 
flux can pass through a material, similar to how electric 
conductivity describes the ease at which electricity can pass 
through a material. The permeability of free space which 
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describes the magnetic permeability of a vacuum  is a constant 
value of about . Its units are in Henry per 
meter or  in SI units. We can use magnetic 
permeability to derive the relation between an inducing magnetic 
field (H)and the resulting magnetic field (B) of an object. 

We start off using the previously established equation for 
magnetic field intensity (H): 

    

We can then move magnetization (M) to the same side as H 
before multiplying  through: 

    
We can use the previously established relation  to 

replace M: 
    
This can be rearranged into the following form: 
    

 is a constant value and can be replaced with  for 
the resulting equation: 

    
However, outside magnetic materials magnetic susceptibility 

so the equation becomes: 

    

In the derivation above, we replaced   with , and this 
relationship can be defined as relative permeability : 
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2.7.3.3 Kinds of Magnetization 2.7.3.3 Kinds of Magnetization 

Using the equation established above , we can 

define three relationships between relative permeability  and 
magnetic susceptibility : 

• If  1" title="Rendered by QuickLaTeX.com" 
height="16" width="50" style="vertical-align: -4px;">, 
0" title="Rendered by QuickLaTeX.com" height="12" 
width="43" style="vertical-align: 0px;"> 

• If , 

• If , 

https://em.geosci.xyz/content/physical_properties/magnetic_permeability/
index.html 

The figure above describes partial alignment of magnetic dipole 
moments under the influence of an inducing field for various cases. 

• (a). Paramagnetic (  0" title="Rendered by 
QuickLaTeX.com" height="12" width="43" style="vertical-
align: 0px;">): Dipole moment aligned parallel to the 
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applied field and produce a net magnetization in the 
direction of the external field. 

• (b). Non-permeable or non-magnetic ( ). 

• (c). Diamagnetic ( ): Dipole moments aligned 
opposite to the external field, reducing the magnetic flux 
density. 

Most rocks are paramagnetic (  0" title="Rendered by 
QuickLaTeX.com" height="12" width="43" style="vertical-align: 
0px;">) but some are diamagnetic ( ) with both forms of 
magnetization being fairly weak. This means that they are 
insignificant contributors to the geomagnetic field. This is in 
contrast to ferromagnetic rocks, which can produce magnetic 
signals that are many times greater than paramagnetic or 
diamagnetic rocks. The strength of ferromagnetic materials comes 
from neighboring dipole moments interacting strongly with each 
other which produces a quantum mechanical effect called 
exchange energy. These interactions allow ferromagnetic 
materials to retain a magnetization even with the absence of 
an inducing field. This type of magnetization is called remanent 
magnetization or remanence. 

2.7.4 Remanent magnetization 

2.7.4.1 Theory for remanent magnetization 2.7.4.1 Theory for remanent magnetization 

(a). Even if you take it to outer space where there is no inducing 
field, it is still magnetized. 

(b). Ferromagnetic materials acquire remanence when they cool 
through its Curie temperature. 

(c). Above Curie temperature, thermal energy prevents dipoles 
from aligning with the external field. 
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(d). As the materials cool down, and eventually below Curie 
temperature, the magnetic dipoles start to align and stay aligned. 

Curie temperature 

(https://en.wikipedia.org/wiki/Curie_temperature 

https://www.britannica.com/science/Curie-point) 

• Curie point 

• Named after a French physicist, Pierre Curie, who showed that magnetism was 
lost at a critical temperature. 

• For iron, the Curie temperature is 770  ( ). 

• Cobalt (  ( )), one of the highest Curie point. 

• Below Curie point, atoms (behave as tiny magnets) spontaneously align 
themselves in direction of external magnetic field (they are permanently 
magnetized). 

• Above Curie point, materials lose their permanent magnetic properties. 

As the material cools the magnetic particles can stay aligned and 
eventually lock into place in a domain structure. Each domain has 
all of its constituent dipoles locked into a single direction. This 
structure stays in place after the ambient field is removed and the 
object will have a net remanent magnetism. 
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Remanent magnetization. Above 580 thermal energy prevents dipoles from 
aligning with external field. Below 580, the magnetic dipoles start to align and 
stay aligned. https://gpg.geosci.xyz/content/magnetics/
magnetics_basic_principles.html#magnetization 

 
The temperature within the Earth increases with depth. We know 

the surface temperature, and we also know roughly how 
temperature increases with depth. So, a simple calculation shows 
that at approximately  depth, the temperature in the Earth 
would be higher than the Curie temperature of almost all known 
ferromagnetic materials. 
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2.7.4.2 Application for remanent magnetization 2.7.4.2 Application for remanent magnetization 

The ordnance items and other man-made objects can be detected 
through remanence. In the figure (b)  below: these kinds of 
magnetic anomalies cannot be explained by induced 
magnetization. 

(a) Upper: a typical UXO site. There are no surface indications of ordnance 
items. Lower: typical ordnance items. (b) Magnetic field data over a site 
contaminated with UXO. https://gpg.geosci.xyz/content/magnetics/
magnetics_basic_principles.html#magnetization 

From magnetization to plate tectonics, when magnetics materials 
are magnetized, the magnetization direction is consistent with the 
direction of the external magnetic field when the magnetic 
materials were magnetized. Ferromagnetic materials such as basalt 
lava flow able to lock in a record of the direction and intensity of 
the magnetic field when they form (i.e., permanently magnetized). 
These records can be transported, rotated and faulted by plate 
tectonics. Therefore, these records provide information on not only 
the past behavior of Earth’s magnetic field and but also the past 
location of tectonic plates. Paleomagnetism: the study of such 
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records in rocks, which played an instrumental role in establishing 
continental drift and plate tectonics as science. 

On the following figure, magnetic stripping offshore Pacific 
Northwest, which centered around Juan de Fuca Ridge which is 
a mid-ocean spreading center and divergent plate boundary 
between Pacific plate and the Juan de Fuca plate. Magnetic striping 
on either side of the ridge helps data the rock and determine the 
spreading rate and age of the plate. 
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Magnetic stripping (https://pubs.usgs.gov/gip/dynamic/magnetic.html) 

 

2.7.5 Total magnetization 

The proper understanding is that the magnetization is composed 
of two parts: (a) An induced portion ( ) and (b) remanent portion 
( ). The net magnetization is: 

    
The relationship between magnetization  and the source 

(earth’s magnetic field) is given by: 
    
where  is the magnetic susceptibility. 
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https://gpg.geosci.xyz/content/magnetics/
magnetics_basic_principles.html#magnetization 

The composite field is below: 
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Composite field: 
    
where  is a vector, 
Total field: 
    
Majority of instrumentation measures , i.e., total magnetic 

intensity, or TMI. Newer platforms can acquire three-component 
magnetic field. Latest instrumentation measures magnetics tensor. 

Measured field: 
The total field anomaly: 
if , then that is , total field anomaly  is the 

projection of the anomalous field onto the direction of the inducing 
field. 
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Tips for ploting magnetic anomalous field 

• First, find the location with zero field (C and E location above the figure). 

• Second, decide  direction and calculate the projection of  to . 

 

• 

Credit: Doug Oldenburg @ UBC 

A wrong example 

Something is wrong!!! 
The magnetic anomaly field is not zero at C location. It should be a small positive value. 
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CHAPTER  3 

Chapter 3: Data Acquisition and 
Reduction 

J IAJIA SUN, FELICIA NURINDRAWATI, KENNETH LI, XINYAN LI, 
AND XIAOLONG WEI 

3.1 GRAVITY INSTRUMENT 

By now, we have accumulated the basic understandings of the 
gravity theories, now let us put things in perspective. Assume 
earth’s gravity is approximately 9.8 , that is, 980 Gal. The 
anomalies that we typically see in geoscience applications are 
typically less than 100 mgal, which is less than 0.01% (one part in 
104) of the Earth’s average gravity field. Therefore, if our interested 
anomaly is 10 mgal, we are then looking for a tiny signal that is one 
part in 105! If our signal is 10 , then the tiny signal we will be 
looking for is only about one part in 108!! 

3.1.1 HOW TO MEASURE GRAVITY? 

So how to measure gravity to catch the tiny signals caused by 
our interested anomaly targets? There are generally three kinds 
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of measurements to get either the absolute gravity or the relative 
gravity data. These methods are 

• Falling body measurements 

◦ Which is simply to drop an object, and measure 
the distance and time, then calculate the 
(absolute) gravitational acceleration. 

• Pendulum measurements 

◦ Which is to measure the period of oscillation of a 
pendulum. 

• Mass on spring measurements 

◦ Which is to suspend a mass on a spring and 
measure the amount of the stretch of the spring 
under the force of gravity. 

Let us discuss these methods and the gravity instruments designed 
based on them in more detail. 

3.1.1.1 Falling body measurements 

The basic principle applied in the falling body measurements is the 
free fall, which is any motion of a body where gravity is the only 
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force acting upon it, as illustrated in the cartoon images shown 

below.
From what we have learned from Physics lectures, we have 

known that the final velocity at a later time can be calculated from 
the velocity as an earlier time, along with gravity acceleration and 
the traveling time, which is 

    

Where g is the time rate of change of speed (i.e., acceleration). 
Therefore, we can calculate the gravity acceleration through the 
time difference and the speeds. 
However, in the actual practice, it is very hard to measure velocity 
accurately. But we can measure the traveled distance more 
precisely and easily. So, if we assume the initial velocity is zero, then 
the distance traveled can be expressed as follows: 
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Thus, the absolute gravity g can be then calculated from the 
measurement of distance and time. 

One of the example instruments designed based on the free fall 
principle is the Absolute gravimeter FG-5 by the Micro g LaCoste 
company. Its schematic diagram is shown below, which consists of 
three sections. The upper section is a vacuum dropping chamber, 
where a mass drops at roughly 100 cycles/minute. The middle 
section contains an interferometer to measure the position of the 
falling mass. The lower section has spring systems that prevent the 
free-fall system from being affected by Earth vibrations, therefore 
it functions as a cushion center to stabilize the whole gravimeter 
system. The reported absolute accuracy of this instrument is 

, with the measurement precision of . 
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Schematic diagram of the FG-5 absolute gravity meter (Timmen et al., 2007) 

Measuring absolute gravity is very very challenging! To measure 
gravity down to 1 part in 40 million (i.e., 25 ) using an 
instrument of reasonable size (e.g., one that allows an object to 
drop 1 meter), we need to be able to measure changes in distance 
down to 1 part in 10 millions and changes in time down to 1 part in 
100 millions! 
For example, let us assume a small ore body (indicated as the 
yellow circle in the graph below), in a spherical shape with a radius 
of 10 meters, centered at the depth of 25 meters below the ground 
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surface. The density contrast of it with its surrounding sediments is 
0.5 g/cc. The measured gravity data along a line profile above the 
ore body will be symmetrical about the center of the sphere. The 
maximum value is quite small, with about 25 , and the gravity 
data approach 0 at a further distance away from the anomaly 
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center (here beyond 60 m).
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3.1.1.2 Pendulum measurements 

Another method to measure absolute gravity is through the 
pendulum measurements. The principle is that we can build a 
simple pendulum by hanging a mass from a rod and displacing 
it from the vertical, like the setting shown in the picture on the 

left.  The mass will begin to oscillate back 
and forth. The gravity will determine the period of its oscillation; if 
the gravity is small, there is less force pulling the mass downward, 
therefore, the pendulum will move slowly toward the vertical, and 
resulting a longer oscillation period. The math expression for 
gravity and the period is as follows: 

    

The equation is assumed to be true when there is no friction 
involved in the motion.  is a constant controlled by the physical 
characteristics of the pendulum such as its length and the 
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distribution of the mass. This equation will give us absolute gravity 
measurements. 

Historically, pendulum measurements were used extensively to 
measure the gravitational acceleration around the globe. To 
minimize the error, many periods of oscillations were observed 
then the average of them would be used. 

Unfortunately, the measurement of constant  is not accurate 
enough to allow us to make gravity measurements down to 1 part 
in 40 million precision. Often the accuracy is limited to roughly 0.1 

 (Hinze et al., 2017, p103). 
Although we cannot measure  accurately, if we use the same 

pendulum system, the  value is constant, then by using the same 
pendulum to measure the periods of oscillation at two different 
locations, we can estimate the change in gravitational acceleration 
at these two locations, without knowing . This method gives us the 
relative gravity measurement. 

For example, the figure below shows the comparison of absolute 
and relative gravity measurements for the same study region. 
Notice that, the shapes of the two gravity profiles are the same, the 
only difference is a constant offset; the anomaly absolute density 
value  was replaced with the density contrast value 
in the relative gravity measurement setting. Relative gravity 
measurements contain all the information we need to identify the 
location and shape of the ore body since what matters is the 
change in gravity, not the absolute gravity values. Thus the relevant 
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parameter is the density contrast, not the density itself.

3.1.1.3 Mass on spring measurements 

Gravity can also be measured with a mass-spring system. As shown 

in the figure on the left,  the 
principle is that, if a mass is hung on a spring, the spring will 
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be stretched because of the gravity force acting upon the mass. 
The stretch is proportional to gravity, mathematically expressed as 
follows: 

    

Where  is the stiffness of the spring, the larger the  is, the 
stiffer the spring is, and the less the spring would be stretched. 

Again, we cannot measure  value accurately enough to make 
sure the measured gravity precision down to 1 part in 40 million. 
However, the extension is proportional to the change in gravity 
caused by the change in density. Therefore, we can measure 
relative gravity (i.e., gravity change) by measuring the extension, as 
illustrated in the experiment set in the graph below. 

Principle and photograph of a gravimeter. (Mussett & 
Khan, 2000) 

One of the gravimeter examples using this mass-spring 
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measurement system is the CG5 gravimeter, used often in the UH 
Geophysical Field Camp, as shown in the picture below. 

Photos from 2018 UH Geophysical Field Camp. 

3.1.1.4 Absolute vs. Relative gravimeter 

In terms of measurement accuracy, relative gravimeters usually 
have an accuracy of > , while absolute gravimeters can 
have accuracies on the order of 1 . For the instrument itself, 
absolute gravimeters are usually larger and heavier than relative 
gravimeters. Therefore, using absolute gravimeters will take longer 
measurement time, and more expensive. 
However, absolute gravity measurements are more accurate, and 
the measured data are free from instrument drift corrections. 
Therefore, their measured data can be used to establish reference 
points to tie together individual surveys, to both national and 
international datums, and can be used to establish gravity 
benchmarks. They are also useful for studies involving high-
precision time variations in gravity, for instance, it is possible to 
observe a 3 mm crustal uplift by monitoring the change in gravity 
at a single station. 
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3.1.1.5 Satellite gravimeter 

Gravity measurements can also be taken by designed satellites. 
One of the well-known examples is the Gravity Recovery and 
Climate Experiment (GRACE) mission, which was a joint mission of 
NASA and the German Aerospace Center launched in March 2002 
and ended in October 2017. This mission was operated by two 
twin satellites which could take detailed measurements of Earth’s 
gravity field and its changes over time. Their measured data were 
used for studying Earth’s ocean, geology, climate, and hydrology, 
etc. 

Image credit: NASA 

Their working principle is that the two identical satellites, each 
about the size of a car, were separate 220 km (137 miles) apart, one 
following the other around the Earth. A microwave ranging system 
in the satellites could measure the distance between them to within 
a micrometer (0.001 mm), which is smaller than a red blood cell. 
By measuring the tiny changes in distance between them, we were 
able to measure the subtle changes in gravity, since their distance 
changes are caused by each of them speeds up and slows down in 
response to the gravitational force. A successful case study done by 

CHAPTER 3: DATA ACQUISITION AND REDUCTION 149



using the GRACE data is the measurement of the water storage in 
Amazon. 

3.2 GRAVITY DATA PROCESSING: 

3.2.1 CONTRIBUTIONS TO GRAVITY 

The observed gravity measurement that we get from gravity 
instruments (i.e. CG-5) are due to many factors. The observed 
gravity measurements are a summation of the following 
contributors: 

 

1. Attraction of the reference ellipsoid: Accounts for 99% 
of your gravity measurements. It is the gravity due to the 
earth, which has an ellipsoidal shape. Recall that the 
gravitational attraction in the equator is smaller than the 
poles because due to the ellipsoidal shape of the earth. 

2. Effect of earth’s rotation: The gravity due to the earth 
spinning on its axis. Recall that the centrifugal force is 
stronger in the equator, which makes the gravitational 
attraction in the equator to be smaller than in the poles. 

3. Instrument drift: The gravity measurements from 
relative gravity instruments (such as CG-5) is not 
consistent with time due to the spring-mass system inside 
the instrument. The change of k (spring constant) in the 
spring affects the gravity readings from the instrument 
(not a real change in the gravity field) 

4. Effect of elevation: The gravitational attraction in 
different observation elevation are different simply 
because the observation locations will have different 
distances towards the center of the earth 
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5. Effect of mass above sea level: The earth is not a simple 
flat plain, it also has mountains and other features above 
the sea level that will also have its own gravitational 
attraction to the gravity instrument and account for the 
observed gravity measurement 

6. Effect of topography: The earth’s surface is subject to 
different topography (i.e. mountains, troughs, valleys, etc.) 
and therefore our measurements are also subject to this 
effect as well (similar reasoning to mass above sea level). 

7. Effect of compensating masses at depth: The earth’s 
crust has different density and thickness throughout the 
earth. This also accounts for the gravity measurements. 

8. Effect of moving platform: If we measure gravity in a 
moving platform, such as airplanes, helicopter, boat, etc, 
then even the movements and rumblings that is caused 
by the movement can contribute to the gravity 
measurements. 

9. Effect of local geology of interest: Gravity due to density 
variations in the crust. This is caused by the density 
contrasts in the subsurface, which gives clues on what 
geological features exist in the subsurface. This effect is 
what we want to isolate and use for interpreting geology. 

 
In geophysics, the gravity that we are interested in is the effect 

of local geology of interest, which will give us information on the 
density contrast in the subsurface, and interpret the geology based 
on the measurements. However, in order to get this information, 
that means we need to correctly find the gravity contribution from the 
8 other effects, and subtract the observed gravity with them. Putting it 
in a more mathematical perspective: 
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Effect of local geologyEffect of local geology = Observed Gravity – (Effect of ellipsoid +  Effect of 
rotation + Instrument drift + Effect of Elevation + Effect of mass above sea 
level + Effect of Topography + Effect of masses at depth + Effect of moving 

platform) 

 
The process of subtracting these contributions from the 

observed gravity is called gravity data correction. This involves 
modelling/finding each of the gravity contributions so that we can 
subtract them from the observed gravity to find the gravity from 
the geology of interest. There are different types of corrections that 
account for each of these effects, which we will learn in the next 
section. 

 

• Theoretical Gravity: Gravity attraction from the 
reference ellipsoid and effect of the earth’s rotation. 
Generally, this correction has something to do with the 
latitude position of the measurements. This has been 
discussed in the previous section, as the theoretical 
gravity can be expressed as: 

 

    

Where ge is the gravitational attraction in the equator,  is the 
latitude. 
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• Temporal Correction: Like the name suggested, this 
correction has something to do with changes in gravity 
measurements with time. This includes the correction for 
effects of tides and instrument drift. 

 

• Free-air Correction: This correction accounts for the 
effect of elevation in our gravity measurements. 

 

• Bouguer slab correction: The correction simplifies the 
different topography of the earth as a uniform slab with a 
uniform density. This accounts for the effect of mass 
above sea level and effect of topography. We want to 
remove these effects so that our gravity data is from the 
same elevation/topography throughout. 

 

• Isostatic Correction: The correction accounts for the 
effect of compensating masses at depth. 

• Eotvos Correction: The correction accounts for the effect 
of moving platform (is done for gravity measurements 
using airplanes, helicopters, boat, ship, etc.) 

In the next section, we will go over each of these corrections in 
more detail. 

3.2.2 TIDE AND DRIFT CORRECTION 

3.2.2.1 Instrument drift effect 

In Geophysics, the most common instruments used to measure 
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gravity are relative gravimeters due to their lower cost and better 
portability to absolute gravimeters. Relative gravimeters use a 
spring-mass system to measure gravity and are prone to 
instrument drift. Instrument drift in relative gravimeters is a 
gradual and unintentional change in readings due to material 
property change. This change can be due to the spring stretching 
repeatedly over time and changes caused by temperature. 
Relative gravimeters are built to minimize the effect of temperature 
through temperature control or are built out of materials that are 
relatively insensitive to temperature changes. However, relative 
gravimeters can still drift as much as 0.1 mGal per day. 

https://pburnley.faculty.unlv.edu/GEOL442_642/gravity/notes/
GravityNotes13InstrumentDrift.htm 

The figure above shows real gravity measurements collected at 
the same site in Tulsa, Oklahoma over 48 hours. There is clear 
oscillatory behavior in the measurements due to the tidal 
attraction of the moon and the sun. It is also clear that underneath 
the oscillations there is a linear increasing trend due to 
instrument drift. 
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3.2.2.2 Tidal effect 

The gravitational attraction of the Moon and Sun produces 
significant distortions on the Earth such as tides, and these changes 
can be measured as variations in gravity observations. This effect 
is referred to as tidal effect, and must be considered in gravity 
observations as they can overwhelm gravity anomalies. It is 
important to make a clear distinction between instrument drift and 
tidal effects. Instrument drift is simply due to temporally varying 
material properties and does not reflect real changes in gravity. 
However, tidal effects are real and measurable changes in 
gravitational acceleration. Unfortunately, changes from tidal effects 
are not related to local geology and are considered as noise. 

In regards to tidal effect, there are two types of tides that must 
be considered. 

1. Ocean Tides: These are distortions of the ocean due to 
the attraction of the Sun and Moon and can be measured 
in meters. 

2. Solid Earth Tides: These are distortions of solid earth 
such as rocks due to the attraction of the Sun and Moon 
and can be measured in centimeters. 

Regardless of the type of tides, the significance of tidal effect is 
both time and latitude dependent, with the greatest effects at 
low latitudes over a period of roughly 12 hours. Tidal effect never 
exceeds 0.3 mGal but should be accounted for in high-resolution 
gravity surveys where gravity anomalies can be measured in μGal. 
A formula exists for computing the tidal effect at any point or time 
on the Earth’s surface. 
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https://pburnley.faculty.unlv.edu/GEOL442_642/gravity/notes/
GravityNotes14EarthTides.htm 

Using the previously mentioned gravity measurements in Tulsa, a 
few observations can be made on tidal effect. The oscillation period 
roughly corresponds to 12 hours, and in this location the tidal 
effects ranged about 0.15 mGal. This is close to the influence of 
instrument drift, which had an influence of about 0.12 mGal on the 
recorded data. 

3.2.2.3 How to correct for tides and drift 

An unfortunate consequence of tidal effect and instrument drift is 
that relative gravimeters will record different measurements at the 
same location. This type of noise is slowly varying with time. This 
has lead to the contemplation of two strategies in order to correct 
for tides and drift. 

The first strategy employs two gravimeters with one 
permanently located at the base station of a survey with the second 
gravimeter used to take measurements for the survey. This 
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strategy uses the first gravimeter to continuously monitor gravity 
changes over the period of the entire survey. However, this strategy 
has a few significant problems that have kept it from being used in 
most gravity surveys. The first is the expensive cost of performing 
a survey in such a manner, as it would require two gravimeters and 
two field crews to operate. Additionally, this strategy disregards 
that each gravimeter has a unique instrument drift so this strategy 
can only remove tidal effects in gravity measurements. 

In comparison to the first strategy, a second strategy uses only 
one gravimeter where the measurements are periodically retaken 
at the base station of a survey rather than continuous monitoring. 
This means that the survey will loop back to the base station in 
between data measurements before continuing onward. The 
advantage of using such a method is that it is cheaper and easier 
to operate with only a single gravimeter. Additionally, using a 
common gravimeter allows for the correction of both tidal effect 
and instrument drift. 

In the following example, we will show how to approximate tidal 
effects and drift. We first start off with recorded gravity 
measurements and observe the variations in regard to time. 
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https://pburnley.faculty.unlv.edu/GEOL442_642/gravity/
notes/
GravityNotes15TemporalVariationCorrectionStrategy.htm 

In order to correct for the slow changes in time of tidal effects 
and instrument drift, we can start off by first approximating the 
changes with a few straight lines. This appears as the green lines 
in the figure below. Once these approximations are made, the 
endpoints of the green line segments can be taken as 
measurements. By assuming linear variation in between the 
measurements, linear interpolation along the blue line below can 
be used to predict the gravity due to tidal effects and drift at any 
time. It is important to note that the time interval between two 
consecutive measurements at the base station must be short 
enough for the linear approximation to be valid. 
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Approximated tidal and drift variation 

A common practice in geophysics is to consider tidal effect as part 
of instrument drift due to the mixed effects that both have on 
gravity measurements, despite the different origins of the effects. 
This means that drift correction in practice will often refer to both 
tidal and drift correction. 

3.2.2.4 A Field Example: Looping Procedure 

In order to better understand how to perform tidal effect and drift 
correction, we will use a field example of a gravity survey. The 
gravity survey uses the looping strategy we discussed previously as 
the correction strategy and the stations are shown in the following 
figure: 
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https://pburnley.faculty.unlv.edu/GEOL442_642/gravity/notes/
GravityNotes16TemporalVariationFieldProcedure.htm 

In the figure above, the yellow dot indicates the location of the 
base station. Establishing a base station is fundamental to a gravity 
survey as a point of reference for future tidal and drift corrections. 
The next few step involves establishing a set of gravity (survey) 
stations to collect data at and the points are indicated with the blue 
dots. After the survey line is designed, the gravity survey itself starts 
with gravity and time measurements at the base station.  After 
taking the initial measurements at the base station, the procedure 
used for this gravity survey was to take measurements at stations 
158-163, with gravity measurements and time measured at each 
station. However, continuing down the line of stations was often 
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interrupted after about an hour to two hours in order to return 
to the base station. If there were additional stations more 
measurements could be made, but in this case reaching the end 
of the survey line meant returning to the base station for the final 
measurements. 

The raw gravity measurements of the example survey 

In the raw data collected above, it is important to note the three 
gravity measurements taken at the base station. The influence of 
time-varying effects is quite clear in the gravity measurements of 
the base station, and highlights the importance of correcting the 
data. We won’t cover the specific equations and methods used to 
construct the linear interpolation required to correct the data, but 
the figure below does show the difference between the raw and 
corrected data. 
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Plotting the corrected data results in the following figure: 
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3.2.3 LATITUDE CORRECTION 

The Earth’s gravitational field varies with latitudes because of its 
ellipsoidal shape and its rotation. Even for a uniform Earth, the 
gravity measurements will change as a function of latitudes. 
Therefore, some of the spatial changes that we observe a gravity 
data map come purely from the differences in the latitudes where 
the measurement were taken. These spatial changes, if not 
corrected for, will be incorrectly interpreted as being due to 
subsurface geological features, leading to incorrect interpretations. 

To correct for latitudes, we can simply subtract the theoretical 
gravity from the gravity measurements. 

3.2.4 FREE AIR CORRECTION 

The free air gravity anomaly takes into account the latitudinal 
changes in gravity. It measures the vertical change in gravity 
between that reference datum and the observation height 
assuming that the gravity station is located in free air, hence the 
name free air anomaly. In this anomaly, the intervening space 
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between the observation and the height datum is assumed to have 
no mass and no gravitation effect, which is unlike other anomalies 
no assumptions are made about the Earth’s masses in free air 
anomaly. 

The free air correction is applied to remove the effects caused 
by the elevation. After the free air correction, the measurements 
of gravity would be adjusted at a reference level. For the Earth, the 
reference is commonly taken as mean sea level. 

The first order approximation can be used to estimate and 
correct the free air anomaly. The gravity field varies by 

 at the surface of the Earth. Minus sign comes 
from the fact that gravity decreases when elevation increases. 

 means if we want our gravity measurement 
to have a precision of , the precision of elevation 
measurements must be around . Obtaining accurate elevation 
measurements is one of the primary cost of high resolution gravity 
survey. 

Why 0.3086 

    

    

    
    

3.2.4 BOUGUER SLAB CORRECTION 

3.2.4.1 Gravity variations due to excess mass 
We observe several basic information from the figure below: 
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It is apparently shown in the figure above, gravity varies from 

A point to B point. There are two reason to explain the gravity 
variation. One reason is that A and B have the difference in 
topography. Another reason is the different amount of excess mass 
underneath cause the gravity variation from A to B. The excess 
masses would contribute more to the gravity anomaly. 

The gravity variation caused by the excess mass underneath the 
B point can be approximated as a slab of material with thickness 

 and density . Obviously, this description does not accurately 
describe the nature of mass below the point B, because the 
topography is not of uniform thickness and the density varies with 
location. But in this section, we assume the slab of material is 
regular (thickness  ) and uniform (density ), the more detailed 
and complicated correction will be considered next. 

3.2.4.2 Correct for excess mass: Bouguer slab correction 
The method we used to correct (or, remove) the spatial variations 

in gravity that are due to the differences in the amount of the 
excess mass underneath each station (seeing figure above) is 
Bouguer slab correction, which is based on this simple slab 
approximation. We assume that the excess mass underneath B can 
be approximated by a slab of uniform density and thickness (seeing 
figure below). 
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We remember gravity decays as a function of distance squared, 

so, the mass directly under the gravimeter and vary near areas 
contributes most to the measurements. The slab approximation, 
thus, can adequately describe how much of the gravity anomalies 
associated with excess mass. 

In the Bouguer slab correction, the vertical gravitational 
acceleration associated with a flat slab can be simply written as 

.  Where  is the density of the slab,  is the 
elevation difference.  is positive for observation point above the 
reference level and negative for observation points below the 
reference level. The negative sign of the Bouguer slab correction 
is make sense, because if an observation point is at a higher 
elevation, there is excess mass underneath. Our gravity reading, 
thus, is larger due to the excess mass, and we would subtract a 
gravity anomaly value to move the observation point back down 
the reference level. 

In the Bouguer slab correction, we need to know the elevation 
of all observation points and the density of the slab used to 
approximate the excess mass. We currently use an average density 
for the rocks in the survey area. For a density of , the slab 
correction is about . 

Summary for the Bouguer slab correction 
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• Bouguer slab correction is rough approximation, but it is simple. 

• Gravity due to a slab is simply . 

• We currently use average density for the rocks in the survey area. For a density 
of , the slab correction is about . 

(https://pburnley.faculty.unlv.edu/GEOL442_642/gravity/notes/
GravityNotes22SlabEffects.htm) 

 

3.2.5 TERRAIN CORRECTION 

3.2.5.1. The problem with Bouguer slab correction 

In the previous section, we talked about how excess mass in the 
surface of the earth can lead to gravity variations. Having our 
stations be in different levels of topography can lead to changes in 
elevation and different amount of excess mass underneath them, 
which in turn leads to these gravity variations. For example, gravity 
measured on top of a mountain will be larger simply because there 
are more masses underneath it.  Recall that we can simplify the 
variations in topography by approximating it as a uniform slab with 
uniform thickness. This is only a rough approximation, and is also 
known as simple Bouguer correction. This rough approximation 
is adequate for simple gentle slopes, but there is a problem in 
Bouguer slab that arises if we have rougher topography. The 
problems can be classified into two: 
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• Valleys 

Consider the figure above and focus on the left-most part 
underneath the text that says “Valley”. We see that the area below 
the blue line (the Bouguer slab) in the left-most side does not 
account for the lack of mass. However, with our gravity correction 
scheme, you still subtract it with with the gravity due to the uniform 
slab. Thus, you will end up with overcorrection of gravity 
measurements near the valleys. The gravity measurement near the 
valley is already low even without the slab correction, but because 
we still subtract it in this process, you will end up with a lower 
gravity value than what you should have. 

• Mountains 

As before, consider the figure above, but focus on the right-most 
part above the text that says “Mountain”.  We see that the area 
above the blue line (the Bouguer slab) in the right-most side does 
not account for the excess of mass. With the gravity correction 
introduced in the previous section, you subtract the gravity 
measured at point B with the gravity due to the uniform slab. 
What’s missing is that it doesn’t take into account that the mountain 
will have its own gravitational attraction acting upon point B, which 
has an upward direction. This means that the gravity measurement 
that we measure in point B is supposed to be lower than it’s 
supposed to, due to the gravitational attraction of the excess mass 
above the slab. This means that we undercorrected our 
measurements. 
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The above factors poses a problem for our correction, which 
brings us to the need to do terrain correction. 

3.2.5.2. Complete Bouguer Anomaly 

Knowing the above factors, we must then find a way to account for 
the topography and terrain in our gravity correction. This can be 
done using terrain correction. Terrain correction is the small 
adjustment we make to our Bouguer slab correction to account for 
topography. This will produce the complete Bouguer Anomaly. 
In other words, terrain correction is the gravity correction due to 
the excess/deficit of mass in the Bouguer slab, accounting for 
contribution from the valleys and mountains. In mathematical 
term, this can be expressed as: 

[Simple Bouguer Correction]  + [Terrain Correction] = Complete 
Bouguer Anomaly 

 
In order to perform a terrain correction, we need a high 

resolution Digital Elevation Model (DEM). This tells us the x,y,z 
locations of all observation locations. We also need to estimate the 
densities of the terrain in order to calculate the gravity of terrain 
at all observation locations. However, this an be computationally 
expensive and time consuming. 

Fortunately, digital topography maps are available worldwide. 
However, they are typically not fine-sampled enough for the near-
zone terrain correction in areas of extreme topographic relief, or 
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where high-resolution gravity observations are required. What we 
mean by near-zone terrain correction is corrections for 
topography located very close (within 558 ft) to a gravity station. 
If the topography is rough, there needs to be a very accurate 
elevation model. This requires very time consuming and expensive 
process. 

Thus we usually use LIDARs to quantify the topography of the 
area. LIDARs can be mounted into an airborne survey (helicopter, 
airplane, etc.). Airborne surveys can cover vast regional areas in 
a short period of time. The method is accurate to about a few 
millimeters (mm). 

The excerpt below talks about the LIDAR in depth, which can be 
found from https://oceanservice.noaa.gov/facts/lidar.html. 

LIDAR 
“LIDAR stands for Light Detection and Randing. It is a remote sensing 

method to examine the surface of the earth and uses light in the form 
of a pulsed laser to measure ranges/variable distances to earth. These 
light pulses, combines with other data recorded by the airborne system, 
generate precise 3D information about the shape of the earth. 
A LIDAR instrument principally consists of a laser, a scanner, and a specialized 
GPS receiver. Airplanes and helicopters are the most commonly used platforms 
for acquiring LIDAR data over broad areas. Two types of LIDAR are topographic 
and bathymetric. Topographic LIDAR typically uses a near-infrared laser to 
map the land, while bathymetric lidar uses water-penetrating green light to 
also measure seafloor and river bed elevations. 
LIDAR can be used to make accurate shoreline maps, make digital elevation 
models for use ingeographic information systems, to assist in emergency 
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response operations, and in many other applications.” 

3.2.5.3. Example of Terrain Corrections 

Consider the following figure: 
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Figure (a) is the observed Tzz component of the gravity data while 
(b) is the terrain effect of the survey area. Notice that (a) and (b) 
are almost identical. What this indicate is that the contribution to 
the gravity data in (a) are mostly (or, completely) from terrain 
effects. This does not give us any important information about the 
subsurface density distribution. After applying terrain correction, 
we get Figure (c), which is the better data to be used for further 
interpretation processes (like inversion). 

3.2.5 HAMMER NET 

3.2.5.1. Terrain Correction History 

Before the technological advancement that we have today, (that 
is, before we have LIDAR), researchers would need to manually 
calculate the terrain correction themselves. Terrain correction was 
first considered by Hayford and Bowie around 1912. Cassinis, 
Bullard, and Lambert in 1930s tackled the problem of how to 
estimate terrain correction. Hammer developed a practical 
approach for performing terrain corrections out to about 22km 
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from the station. Bullard (1936) broke the terrain correction into 
three parts: 

The first part is similar with simple Bouguer correction, which is 
also referred to Bullard A. This method approximates topography 
as an infinite horizontal slab of thickness equal to the height of the 
station above the reference ellipsoid or another datum plane. 

The second part (Bullard B) is developed based on the curvature 
of the Earth, which reduces infinite Bouguer slab to a spherical cab 
of the same thickness with a surface radius of 166.735 km – 1.5 
degree. 

The third part (Bullard C) is terrain correction which takes 
undulations of topography into account. Topographic variations 
results in the upwards attraction of hills above the plane of the 
station and valleys below, which decrease the observed value of 
gravity, so both of these effects must be added to readings to 
correct for topography. 

3.2.5.2 Hammer net 

Hammer improved on the method of Hayford to simply terrain 
corrections. His “Hammer net” was widely used to make the terrain 
correction in past decades. This method involves 
compartmentalizing the area surrounding the measurement point 
using a template that is termed as Hammer net. Specifically 
speaking the Hammer net divides the area around a gravity station 
(shown in the figure below) using a template on the printed 
topographic maps. 
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A Hammer net (http://www.cas.usf.edu/~cconnor/pot_fields_lectures/
Lecture7_graity_terrain.pdf) 

 
During the terrain correction process, for each gravity station 

(central red point in the figure above), a Hammer net is centered 
around it. The elevation of the centered station is determined 
through a known terrain model. The elevation difference, 
therefore, is estimated in each compartment by the Hammer net. 
The mathematical expressions of elevation estimation is following: 
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where  is the station elevation,  and  are two known 
elevations of different compartment,  is the elevation difference 
of compartments. 

Clearly note that topography affects gravity data the most and 
 in the innermost zone, so different inner zone correction 

is normally used and Hammer net correction is currently referred 
to an outer zone terrain corrections. 

What is gravity effect of a radial component of a hollow vertical cylinder with a flat top? 

    

where, :bulk density for the compartment, : angle subtended by the two radial lines 
bounding the segment, : inner radius, : outer radius. 

Total terrain effect: 
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http://www.cas.usf.edu/~cconnor/pot_fields_lectures/Lecture7_graity_terrain.pdf 

3.2.5.3. Complete Bouguer Anomaly 

Complete Bouguer anomaly is associated with observed gravity, 
free air correction, slab correction, terrain correction and latitude 
correction, which reflects the subsurface density variations. The 
complete Bouguer anomaly can be expressed as: 

    
where,  is measured gravity,  is free air correction,  is 

slab correction,  is terrain correction and  is latitude correction. 
Some Bouguer anomaly examples are shown below: 
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Bouguer Gravity Anomalies of New Jersey. (https://www.state.nj.us/dep/njgs/
geodata/dgs04-2.htm) 
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The figure shown above contains two GIS shape files of bouguer 
gravity contours, lines and polygons, at 1 and 5 milligal intervals 
respectively. The contours are based on gravity data in New Jersey 
and vicinity. The bouguer anomalies at 1 milligal interval range 
from a low of -58 milligals to a high of +37milligals. At 5 milligal 
intervals they have lows ranging from -55 to -60 milligals and highs 
ranging from +35 to +40 milligals. 

 

Bouguer gravity over Northeast Iowa. (https://pubs.usgs.gov/ds/2005/135/
ia_boug.htm) 

Bouguer gravity (figure shown above) reflects lateral density 
variations in the Earth. Positive anomalies (red color) occur in ares 
with average density greater than the Bouguer reduction density of 
2.67 gm/cc, whereas negative anomalies (blue color) occur in areas 
of lower density. The highest anomalies are closely related to mid 
continent rift, which means something subsurface has really high 
density. 
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Observed Bouguer gravity anomalies in the North Pennine region. 

Based on the stations from the British Geological Survey national 
gravity databank. Contour interval = 2 mGal. Dashed line is the 
edge of the fluorite zone (after Dunham 1990). Grey shading 
indiates urban areas; black dots are selected boreholes (Figure 2 in 
Kimbell et al, 2010, The north Pennie batholith (Weardale Granite) 
of northern England – new data on its age and form). 
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3D model of the north Pennine batholith. (https://en.wikipedia.org/wiki/
North_Pennine_Batholith) 

3D model of the North Pennine Batholith (aka the Weardale 
Granite), adapted from Kimbell et al. (2010). The North Pennine 
Batholith, also known as the Weardale Granite is a granitic 
batholith lying under northeast England, emplaced around 400 
million years ago in the early Devonian. The batholith is composed 
of five plutons: A: Weardale Pluton B: Tynehead Pluton C: Scordale 
Pluton D: Rowlands Gill Pluton E: Cornsay Pluton. 
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Gravity anomaly of a massive sulphide body (credit: Yaoguo Li @ CSM) 

The figure above (left) is observed gravity data, the figure below 
(right) is geological model built based on drill hole data. 

3.2.5.4. A Few More Examples 

Bouguer anomalies map of the conterminous US. 

The negative (cold color)  in the West US in basin areas, the positive 

CHAPTER 3: DATA ACQUISITION AND REDUCTION 181



(warm color) in the East US in the mountain areas. The anomaly’s 
corresponding features are labeled in the figure above. 

Figure 1: a) topography (Dehls et al., 2000) and b) Bouguer gravity anomalies 
of Fennoscandia (Skilbrei et al., 2000; Korhonen et al., 2002). A, B, C represent 
the three lines used in the gravity modelling. (http://www.mantleplumes.org/
Scandes.html) 

The observation from the figure above, the negative anomalies at 
location where the elevation is high. 
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Bouguer anomaly over Alps 

 

Bouguer anomalies over Himalayas (Mishra & Kumar 2008) 

Bouguer anomaly map of the Himalaya and Tibet obtained from 
the satellite free air anomaly map (Shin et al., 2007) showing a 
major gravity low (L1 area) over Tibet and gradients G1 and G2 
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coincide with Himalayan. thrust and suture zone (ITSZ) and Altyn 
Tagh fault, respectively. The gravity highs, H1 are related to Tarim 
basin. We noticed that the gravity is lower over the Himalaya 
mountain. The trend is the Bouguer gravity  is generally lower over 
mountains. 

Thinking 

From the observation above, the Bouguer anomalies are usually negative over the 
mountains, why??? 

This question will be discussed in the following section. 

 

3.2.6 ISOSTASY 

3.2.6.1. Concept of Isostasy 

In order to understand the concept of isostasy, we will first start by 
discussing Archimedes’ Principle. Archimedes’ Principle states that 
“A floating body will displace a volume of fluid whose mass is equal 
to that of the body.” Consider the following example of a cargo ship 
floating in the ocean: 
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Increase body density, body floats lower in fluid. Increase fluid density, body 
floats higher in fluid. 

While the cargo ship is unburdened, it will float higher than after 
cargo is added. This is due to the increased density of the total 
body, which increases the water displaced and decreases the 
height that the ship floats at. In both situations, the ship is at 
hydrostatic equilibrium as stated by Archimedes’ principle, and 
isostasy is a geophysical way of defining the same concept. The 
word isostasy is derived from Greek and means “equal standing.” 
In geoscience, isostasy is the vertical positioning of the lithosphere 
so that the gravitational and buoyant forces balance one another. 
The body and fluid of Archimedes’ principle is the low-density 
lithosphere that floats on denser underlying asthenosphere in 
isostasy. 
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Courtesy of the USGS 

3.2.6.2. Hydrostatic Equilibrium 

In the previous section, we briefly mentioned <strong>hydrostatic 
equilibrium</strong>, and we will further expand on the concept. 
Simply put, at hydrostatic equilibrium all mass involved in the 
system is in equilibrium and does not move. This means that the 
sum of all forces acting on a mass in this state must be zero 
according to Newton’s second law. Consider the following example 
of a block of rock located deep in the Earth: 
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In the figure above, the block that we are considering is colored 
blue and has a density  and length . In this case, the force on 
the top of the rock is . The force at the bottom of the rock is 
the sum of the force on top plus the gravity of the cube itself, and 
can be defined in the following equation: 
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If  and  are both functions of depth, then to solve for pressure at 
some depth R, we must integrate from the surface down to depth R. 

    

Now, we will consider the following example of an iceberg at 
hydrostatic equilibrium: 

Suppose that the iceberg above sticks out of the water by a height 
 and extends below the waterline at a length . By using the 
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known densities of  and , we can find the 
extent of  based on  using the following equation: 

    
By substituting in the known densities of water and ice, we get: 
    
At this point, we can define h as a ratio of H as area  cancels 

out: 

    

    

Exercise: 

Suppose that an iceberg sticks out by  instead of . How deep does it now extend 
below the waterline? 

Now, imagine if we used a mountain instead of an iceberg in the 
example above. In this case, we would replace water with a sea of 
heavier mantle materials (e.g. olivine or pyroxene) but the same 
analysis applies if we assume that the mountain is also in 
hydrostatic equilibrium. However, we would apply a different term 
in geophysics as we would state that the mountain is in isostatic 
equilibrium or isostasy instead. Additionally, we must make the 
basic assumption that there is a depth at which the pressure due 
to the column of rocks above does not change laterally. This depth 
is called compensation depth or level. 

3.2.6.3. Isostasy 

There are a couple of important concepts and assumptions related 
to <strong>isostasy</strong> that we must discuss. The first comes 
from the section above, and this is that there is a <b>compensation 
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depth</b> or <strong>level </strong>at which pressure from a 
column of rocks above does not change laterally. Regions of high 
topography on a surface represents an excess of mass and 
pressure, which must be compensated at depth by a deficit of mass 
with respect to the surrounding region. Additionally, mountain 
belts are often also regions of thickened crust. This means that 
conversely, topographic depressions are matched by mass 
excesses at depth. 

The figure below depicts three types of isostasy: 

3.3. MAGNETIC MEASUREMENTS 

Measurements of magnetic fields can be done using magnetic 
instruments. In this section, we will explain physics behind the 
instruments that we used to measure magnetic field, commonly 
used in geophysics. 

3.3.1. FLUXGATE MAGNETOMETER 

The fluxgate magnetometer was first invented in 1936 before WWII 
and was mostly used to detect submarines (which are metallic, 
and therefore would produce magnetic signals). The fluxgate 
magnetometer was also the type that was used to prove the theory 
of plate tectonics. As we have explained in the previous section, 
the evidence of plate tectonics and seafloor spreading were found 
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from the magnetic measurements near mid-ocean ridges, that 
form what we call as “magnetic stripes”. 

3.3.1.1. Concepts 

Before going through the details on how Fluxgate Magnetometer 
works, let us review some concepts in magnetics that will be useful 
in this section. First concept is magnetic susceptibility ( ), a 
dimensionless property. If we  assume an inducing field H (for 
example the earth’s magnetic field at the geographic region) that 
is applied to a magnetic material, then it will produce an induced 
magnetization M in the material. This is mathematically expressed 
as: 

 
    
 
From the linear relationship above, theoretically we can say that 

the magnetization (M) increases if we increase the inducing field 
(H). However, some magnetic materials under the influence of an 
external magnetic field, will reach a state where an increase in the 
external magnetic field H does not increase the magnetization of 
the materials further. In other words, the magnetic flux levels off as 
you increase the external field, and continues to increase at a very 
slow rate due to vacuum permeability. This phenomenon is called 
magnetic saturation. 
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From the above picture, we see that different magnetic materials 
will have different curves associated with the relation between 
H field (inducing field) and B field (induced field, equivalent to 
M). Some curves saturate at a slower rate than others, and this 
depends on the materials. 

 
Now that the above concepts are explained, we can move on 

to explaining more about the physics behind fluxgate 
magnetometers. 

3.3.1.2. Instrument Parts 

Primary Coil 
A fluxgate magnetometer can be explained by the following 

diagram: 
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We can see that the magnetometer is made off two cores that are 
made off ferromagnetic materials, labelled as Core A and Core B. 
These cores are placed next to each other and have two loops 
surrounding it. One loop is called the primary coil/sense coil and 
has an AC (alternating current) going through it. This one coils 
around core A and core B as the following picture: 
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The AC current generates magnetic field H and gets the two cores 
magnetized. However, their magnetization varies with time. This is 
because AC current varies with time and thus the magnetic field 
H also varies in time. Notice that the primary coil is wound in 
the opposite senses around the two cores (ex: Core B is wound 
such that the magnetic field direction goes down, and core A is 
wound such that the magnetic field direction goes up). Because the 
inducing fields H are in the opposite direction in these two cores, 
therefore, these two cores get magnetized in opposite directions. 

Secondary Coil 
The other coil that wounds through both core A and core B is 

used to measure the voltage in the two cores (indicated by the 
letter ‘v’ in the schematic of the fluxgate magnetometer). This is 
the secondary coil and it measures the voltage using Faraday’s 
Law. To understand this, we introduce the concept of electromotive 
force (emf). It is the force that drives currents to flow in a wire 
or in a conductive body, with unit of volts. It can be expressed 
mathematically as such: 
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Where  is the magnetic flux. Any change in magnetic flux 
induces an emf/voltage. This process is called electromagnetic 
induction. An emf, when applied to a conductor, generates current. 

3.3.1.3. Measurements 

Knowing that the secondary coil measures the emf, and that the 
changes in current throughout time also causes the magnetization 
to change throughout time, let us examine the following figure: 

From the above picture, (a) is the emf from the AC current that 

CHAPTER 3: DATA ACQUISITION AND REDUCTION 195



changes in time. This in turn changes the magnetization of the 
cores as we see in (b), where the dash line is from core A and the 
solid line is from core B. Notice that the magnetization saturates 
to a flat line after a certain amount of time, and changes with 
the alternating current. In addition, (c) is the measured emf from 
the change in magnetization between core A and core B. Notice 
that if we add the dash line (emf from core A) and solid line (emf 
from core B), the summation will result in zero. Thus, the sum of 
the voltages from the two cores is zero if there is no external 
magnetic field. 

In the presence of an external field, for example, if this two-core 
system is placed in the earth’s magnetic field, then the sum of the 
voltages between the two cores is non-zero. Let’s look at the figure 
below: 
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In this case, the earth’s magnetic field is represented as the red 
line pointing upwards. The total magnetic field applied to core A 
increases, and thus the magnetization reaches saturation earlier. 
The total magnetic field applied to core B thus decreases (opposite 
directions) and the magnetization reaches saturation later than 
in core A. Consequently, the voltages from these cores will have 
a phase shift, producing a non-zero summation of the voltages. 
This phase shift due to the external magnetic field is captured 
in the voltage measurements as the following figure (d), and the 
summation of voltage can be seen in figure (e). 
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In some systems, a third coil which passes a direct current is 
wrapped around the entire system. This produces a magnetic field 
that offsets the earth’s field. When the output of the secondary coil 
is reduced to zero, then the DC field is exactly equal and opposite 
to that of the earth’s magnetic field. Thus, by monitoring the DC 
required to maintain zero secondary output, variations in the 
earth’s magnetic field can be measured. 

Knowing how a fluxgate magnetometer works, the two-core 
system can be put in three directions in order to get the three 
components of the magnetic field (Bx, By, Bz). 
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Source: https://www.youtube.com/watch?v=_5d0qz_umuE 
A fluxgate can measure the component of the earth’s magnetic 

field in the direction of the axis of the system. By purposely 
pointing the axis into a direction, we can measure any component 
of the earth’s magnetic field. Thus, to measure the total field, we 
can either: 

1. Measure the three component using three mutually 
perpendicular system 

2. Orient a single system in the direction of the total field 

3.3.2. PROTON PRECESSION 

3.3.2.1 Atomic nucleus and proton 
Proton is the fundamental part of the proton precession 

magnetometer. So, firstly, we briefly recall the atomic nucleus and 
proton. 
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The atomic nucleus is the small, dense region consisting of 
protons and neutrons at the center of an atom. An atom is 
composed of a positive-charged nucleus, with a cloud of negative-
charged electrons surrounding it, the nucleus and electrons bound 
together by electrostatic force. Almost all of the mass of an atom 
is located in the nucleus, with a very small contribution from the 
electron cloud. Even though, the nucleus contains almost 99.9% of 
the mass of an atom but only occupies a volume whose radius is 
1/100,000 the size of an atom. Protons and neutrons are bound 
together to form a nucleus by the nuclear force. 

 

Structure of an atom 

 
3.3.2.2 Precession 
Precession is a change in the orientation the rotational axis of a 

rotating body. In other words, if the rotation axis of a body is itself 
rotating about a second axis, that body is said to be precessing 
about the second axis. 
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Precession of a gyroscope 

The Earth rotates on its axis but has a slight ”wobble or ‘oscillation’ 
to be precise like a spinning top. This wobble takes approximately 
26,000 years and has implications for how we view and measure 
the stars over a long period. The process is known as precession 
of the equinoxes or axial precession. Main reason for precession 
of Earth is that Earth is not a perfect sphere and is an oblate 
spheroid, it is slightly wider at the equator. The Sun and Moon 
have a gravitational influence on Earth and this combined with the 
Earth’s bulge causes a wobble in the Earth’s tilt. 
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Precession of Earth (https://www.space.fm/astronomy/planetarysystems/
precession.html) 

Here, we introduce the precession of a spinning top. A rapidly 
spinning top will precess in a direction determined by the torque 
exerted by its weight. The precession angular velocity is inversely 
proportional to the spin angular velocity, so that the precession is 
faster and more pronounced as the top slows down. Spin a top on 
a flat surface, and you will see it’s top end slowly revolve about the 
vertical direction, a process called precession. As the spin of the 
top slows, you will see this precession get faster and faster. It then 
begins to bob up and down as it precesses, and finally falls over.  In 
other words, any rotating objects (i.e., with an angular momentum) 
can undergo precession under the influence of a torque. 
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Precession of spinning top (http://hyperphysics.phy-astr.gsu.edu/hbase/
top.html) 

 

Precession of a top 
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The torque caused by the normal force  and the weight of the top causes a change in 

the angular momentum  in the direction of that torque. This cause the top to precess. 
The mathematical equation for precession of a top is: 

    

where, : torque, : angular momentum. 
 

https://en.wikipedia.org/wiki/Precession#/media/File:PrecessionOfATop.svg 

It is important to note that if an object has an angular momentum 
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(i.e.,  it is rotating), and if an external torque exists, the object will 
precess. 

 
3.3.2.3 Precession of a proton 
A proton has an angular momentum, resulting from spin of a 

proton. Just like a top has an angular momentum. The more 
specific information refer https://physicsworld.com/a/the-spin-of-
a-proton/.  Objects possessing momentum tend to maintain their 
motion unless acted up by an external force. In our cases, the 
gravity can create a torque. For magnetic data acquiring, a torque 
can be created by an external magnetic field. The equation is 
below: 

    
where, : torque, : magnetic dipole moment, : external 

magnetic field, : angular momentum vector. 
Therefore, a proton will precess. The external field with angular 

frequency knowns as Larmor frequency. 
    
where, : angular frequency in radians / sec, : a particle-specific 

constant. 
 
3.3.2.4 Proton precession magnetometer 
The proton magnetometer, also known as the proton precession 

magnetometer uses the proton precession to measure the 
variation in the Earth’s magnetic field. The cylinder at the top 
(white) contains hydrogen-rich fluid (e.g., kerosene, decane, water). 
There is also a solenoid. When direct current flows in the solenoid, 
a strong magnetic field is created. The protons align themselves 
with that field. Then the current is interrupted, and as protons 
realign themselves with the ambient magnetic field. The external 
Earth’s field creates a torque, and causes the protons to precess 
and they precess at a frequency that is directly proportional the 
magnetic field. 
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G-856 proton precession magnetometer at base station. 
Picture taken at UH 2018 Geophysics Field Camp. 

3.3.3. AKALI VAPOR 

3.3.3.1. Basic Concepts of Alkali Vapor Magnetometers 

The easiest way to understand Alkali Vapor Magnetometers is to 
start by deconstructing its name. Alkali is fairly simple, and refers 
to alkaline metals such as cesium, potassium, and rubidium that 
can be used in the construction of Akali Vapor Magnetometers. The 
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magnetometer contains an alkali metal within a cell or chamber 
that will continuously heat the metal until it reaches a gaseous 
form. In the case of cesium, this vapor can be produced at 
temperatures ranging from approximately 45 to 55 degrees 
Celsius. The vapor is important as these magnetometers operate 
based on splitting electron energy levels in alkali metals by the 
Zeeman effect. 

3.3.3.2. Zeeman Effect 

In order to explain the Zeeman Effect, we will 
need to delve a bit into quantum mechanics. 
When an external magnetic field is applied to 
an atom, its atomic energy levels are split into 
a large number of levels. Under a continuous 
spectrum of light, spectral lines are distinct lines 
resulting from either light emission or 
absorption by atoms or molecules which form 
against the continuous background. These lines 
can be used as “fingerprints” to identify 
molecules or atoms, but are split into multiple 
components of slightly different frequencies 
when under the influence of a magnetic field. 
This is called the Zeeman Effect and was first 
observed by Dutch physicist Pieter Zeeman who 
shared the 1902 Nobel Prize in Physics with 
Hendrik Lorentz for this discovery. 
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Spectral lines of Lithium, an akali metal. Produced by Neill Tucker, distributed 
under a CC-BY 0 license 

The figure below shows the splitting of energy levels and the 
changes to the light spectra under a magnetic field: 

http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/zeeman.html 

We will now do a deeper dive into the physics behind the Zeeman 
Effect. We will start with the atomic energy levels of an atom or 
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molecule when there is no magnetic field.

When an external magnetic field is applied, the atomic energy 
levels will separate. The figure below labels the separated energy 
levels as A1, A2, B1, and B2.

The energy gap between energy levels such as A1 and A2 is 
determined by the strength of the applied magnetic field. In an 
Akali Vapor Magnetometer, a beam of light with a frequency that 
corresponds to the energy gap between A2 and B2 can be used 
to irradiate the akali vapor. Electrons in the vapor at energy level 
A2 will absorb the energy from the beam and move to the higher 

CHAPTER 3: DATA ACQUISITION AND REDUCTION 209



energy level of B2. Additionally, the beam can be manipulated 
so that it does not contain any frequencies corresponding to the 
energy gap between A1 and B1. This process is called polarization. 

In other words, after polarization electrons can only jump from A2 
to B2 but cannot jump from A1 to B1. This means that electrons 
from A2 will all jump to B2, but B2 is at a higher energy state and 
therefore unstable. This means that energy will be released and 
the electrons will fall back down to either A1 or A2. This process of 
rising and falling atomic energy states will continue in a loop until 
all electrons eventually settle at A1. This process of overpopulating 
one energy level is known as optical pumping. At this point, the 
photons from the light beam will pass through the magnetometer’s 
chamber with no energy loss. The vapor is therefore registered as 
transparent, and a photosensitive detector in the magnetometer 
will register a maximum current. 
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At this point, an RF (radio frequency) signal that has a frequency 
corresponding to the energy gap between A1 and A2 can be 
applied. This will lead some of the electrons to jump up to A2 
which will absorb the photons from the light beam once again. 
The photosensitive detector will measure a decrease in current at 
this point. Unfortunately, the exact frequency of the desired RF 
frequency is unknown, so a varying RF signal is applied to sweep 
through a range of possible frequencies. This frequency is related 
to the energy gap which is determined by the strength of the 
magnetic field according to Zeeman splitting. 
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This means that by measuring the RF frequency accurately, an alkali 
vapor magnetometer can determine the strength of a magnetic 
field. 

3.3.3.3. Alkali Vapor Magnetometer 

When compared to the proton precession magnetometers 
mentioned previously, an alkali vapor magnetometer is an order 
of magnitude more sensitive. The sensitivities reported can range 
from as small as 0.001 to 0.01 nT. This is compared to a proton 
precession magnetometer which has an accuracy ranging from 0.1 
to 1 nT. The most commonly used alkali vapor magnetometers are 
cesium vapor and potassium vapor magnetometers. 
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G-858 Cesium Vapor Magnetometer at a base station. This picture was taken 
at the UH 2018 Geophysics Field Camp. 

It is important to note that the magnetometers that we have 
mentioned so far are scalar magnetometers. There are 
also vector magnetometers, such as Fluxgate and SQUID 
(superconducting quantum interference devices). A fluxgate 
magnetometer has a sensitivity of about 0.1 to 1 nT like the proton 
precession magnetometer, but a SQUID magnetometer is far more 
sensitive than any of the other magnetometers that we have 
mentioned so far.  It has a sensitivity of  nT, and can measure 
the three-components of magnetic field along with its gradients. 
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3.4. MAGNETIC DATA PROCESSING 

Like raw gravity data collected in the field, magnetic data also needs 
some necessary corrections before being interpreted. As data are 
shown in the graph above, the blue, orange, gray dots are magnetic 
data recorded as the base station through the day 1, 2, and 3; the 
horizontal axis represents the time, the vertical axis denotes the 
magnetic data in . The red ellipses grouped data with a large 
number of noises. 

The data measurements are taken with varied spatial locations 
in order to cover the study area, meanwhile, the recorded data are 
taken at different time periods of a day, which is reflected from the 
linear trend in the data shown in the above graph. Therefore, we 
need to remove the time variation effect, to left only the spatial 
variations due to the local geology we are interested in. 

3.4.1 DIURNAL CORRECTION 

The time variation effect removal from the magnetic data is called 
the Diurnal correction, which is to take consideration of the 
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magnetic field changes due to the solar activities and their 
interaction with the ionosphere and magnetosphere. Because 
these changes have nothing to do with subsurface geology, 
therefore, they need to be removed from the raw measurements 
to enhance the signal from the geology features. 

Usually, in data acquisition, one magnetometer was fixed at the 
base station to take continuous measurements of the magnetic 
field, say, every 10 seconds; while another magnetometer will be 
carried to the field to record at various locations. 

3.4.2 IGRF SUBTRACTION 

After subtracting the temporal variations of the magnetic field, 
what’s left is the variation due to the normal Earth, and the 
materials deep in the core. Therefore, the International 
Geomagnetic Reference Field (IGRF) subtraction will be taken, 
in order to subtract the background magnetic field produced by 
the Earth’s deep interior materials, so that, we can only focus on 
magnetic anomalies from the crust. 

In general, the vertical gradient varies from approximately 0.03 
 at the poles to 0.01  at the magnetic equator, while 

the longitude variation is rarely greater than 6 . Therefore, 
elevation and latitude corrections are generally unnecessary. 

To do this IGRF correction, we can input the longitude and the 
latitude of the measurement location into a mathematical model 
of the Earth magnetic field. After the subtraction, what’s left in the 
data is from the local geology. 

Moreover, besides the two corrections mentioned above, do we 
also need to consider the terrain effects in the magnetic data? The 
answer is no, in general. However, in some special cases, terrain 
effects can be significant. For example, terrain effects can be as 
large as 700  at steep slopes (e.g., 45 degrees) on only 10 
m extent in formations containing 2% magnetite. In such cases, 
terrain correction should be done. However, this correction 
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requires us to know the magnetic source bodies in the terrain 
and be able to model their magnetic effects, which is very hard 
to achieve! Moreover, crustal magnetization can vary by several 
orders of magnitudes at essentially all spatial scales. Thus, we 
generally do not do terrain correction. The effects of terrain are 
often left to the modeling and interpretation stage. 
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CHAPTER  4 

Chapter 4: Anomaly 
Enhancement 

4.1 DATA ENHANCEMENT 

In previous chapters, we have discussed a lot about processing 
data which contains contributions from many sources, these 
sources have different physical properties and different scales or 
depths. Specifically, we have focused on anomaly separation from 
the observed data to remove unwanted contributions and single 
out the signal from targets. In practice, we would also apply various 
anomaly enhancement methods, in order to increase the visibility, 
or interpretability, or importance of the desired features, or signals 
with respect to others. Anomaly enhancement does not remove 
unwanted signals, instead, it helps to diminish or suppress their 
manifestation on a data map. There are many enhancement 
methods, such as the histogram equalization technique, and 
various types of derivative-based enhancement methods. We will 
discuss them in detail in this chapter. 
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Data processing flowchart. Image courtesy of Stuart Hall at UH. 

4.1.1 HISTOGRAM EQUALIZATION TECHNIQUE 

Histogram equalization technique is a common method in image 
processing to increase contrast in the intensities, such as in the 
pixel values intensity so that the adjusted values can be better 
distributed on the histogram, as illustrated in the image below. 

218 J IAJIA SUN



Histograms of an image before and after equalization. 
(https://en.wikipedia.org/wiki/Histogram_equalization) 

The technique allows for areas of lower local contrast to gain a 
higher contrast, through spreading out the most frequent intensity 
values in the histogram. In the example of the figure shown below, 
the top row displays the original image and its pixel values 
histogram (in red) and its cumulative histogram (in black) before 
applying the histogram equalization method; The image is blurry, 
and the pixels values are concentrated within a narrow range. 
However, after implementing the equalization (shown in the 
bottom row), the pixel values are spread out in a wider range, and 
the resulting image is sharper and therefore more details could be 
visualized. 
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Implementation example. Image source from https://en.wikipedia.org/wiki/
Histogram_equalization 

Application to geophysics 
In geophysical data, subtle features in data images with a high 

dynamic range, such as aeromagnetic data, are difficult to be 
visualized. Histogram equalization can help to bring out these 
subtle features. For example, the left figure below is the observed 
aeromagnetic data image without equalization, while the right 
figure displays the data after equalization was applied; We can 
observe that large-amplitude features are still there, while the 
smaller amplitude values (around 0) which are not clearly shown in 
the original figure now become more clearly visible to our naked 
eyes. 
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Application example to Geophysics. 

4.1.2 DERIVATIVE-BASED ENHANCEMENT METHODS 

Usually, the anomalies to be enhanced are of small spatial scales 
than that of those we want to suppress. In general, features with 
shorter wavelengths are associated with steeper gradient and 
greater curvatures. Therefore, derivative-based methods are 
among the most widely used techniques for enhancing anomalies. 

There are many derivative-based methods, such as the vertical 
derivative, total horizontal derivative, tilt derivative, and total 
horizontal derivative of the tilt derivative, which we will discuss in 
the following. Other enhancement methods are also popular, such 
as downward continuation, strike filtering, and phase preserving 
dynamic range compression filter (https://www.peterkovesi.com/
projects/tonemapping/index.html). 

4.1.2.1 Vertical derivative 

The vertical derivative of the data image could enhance the visibility 
and interpretability of the original data image. 
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For example, as shown in the synthetic modeling figures below, 
the gravity gradient image ( ) is compared with the gravity 
anomaly image ( ) in several synthetic models, with a different 
number of anomaly blocks in the subsurface. Generally, in 
comparison with the gravity images, the vertical derivative images 
could be used to better define and differentiate the spatial 
locations of the blocks, and more accurately to determine the 
number of blocks from the data images, while the gravity anomaly 
images cannot be used to clearly separate the signals from multiple 
blocks. 

(Gonenc 2014, JAG) Two cubic blocks example. 
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(Gonenc 2014, JAG) Four cubic blocks example. 

(Gonenc 2014, JAG) Eight cubic blocks example. 

4.1.2.2 Total horizontal derivative 

Similar to the vertical derivative of the data, the horizontal 
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derivative of the data image could also be used to better enhance 
the anomaly interpretability. 

For example, the figures below represent the gravity data , the 
horizontal derivative of  in the North direction, and horizontal 
derivative of  in the East direction, respectively. All the derivative 
data images can be used to better define the boundaries of the 
target features in the subsurface. More specifically, the horizontal 
derivative in the North direction defines the north/south boundary 
of the target body, while the horizontal derivative in the East 
direction defines the west/east boundary of the target body. 
Altogether, the derivative images could help us determine the 
general boundary of the target feature. 

The total horizontal derivative magnitude is the square root of the 
sum of the squares of the horizontal derivatives in  (or E/W) and 
(or N/S) directions. Its math expression and an example are shown 
in the following. 
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Blakely, 1996, p348 

Another comparison example was shown in the images below, the 
total horizontal derivative of the gravity data shows much more 
detailed structures in comparison to the Bouguer gravity map. 

Gravity map v.s. The total horizontal derivative of the gravity map. 
(https://www.eoas.ubc.ca/ubcgif/iag/methods/meth_4/gravgrads.htm) 

4.1.2.3 Tilt derivative 

Tile derivative is the arctangent of the ratio between the vertical 
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derivative and the total horizontal derivative of the data. Its 
mathematical expression is shown in the following. 

Tilt derivative. (Miller and Singh, 1994, JAG) 

We can compare and contrast the characteristics of different 
derivatives of the data along with the tilt derivative of the gravity 
data simulated from two density blocks buried at different depths 
shown below. 
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Miller and Singh (1994, JAG) 

Based on the data images above, we can make the following 
observations: 

• in figure (b), the horizontal derivative shows 2 peaks 
corresponds to the boundary of the blocks; 

• in figure (c), the vertical derivative shows a more compact 
pattern, which defines the shape and distribution of the 
source bodies; 

• in figure (e), the tilt angle image shows two signal peaks, 
where the peak from the deeper body is comparable in 
amplitude with the shallower body signal peak! And the 
peaks are right above the body locations. That is the 
significant characteristic of the tilt angle enhancement 
method. 
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If we further take the horizontal derivative of the tilt angle, then the 
data profile will show the boundary of the source bodies, and this 
will be called the horizontal derivative of the tilt derivative. 
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CHAPTER  5 

Chapter 5: Fourier-domain 
Modeling & Transformations 

5.1. BACKGROUND 

5.1.1. MOTIVATION 

Up until this point, we have dealt with 2D gravity and magnetic data 
maps in the spatial domain. In this chapter, we will be looking at 
different way in dealing with these data: in the frequency domain. 
A lot of data processing techniques require the data to be in 
frequency domain due to its simpler and more efficient 
mathematical operators. The motivation to studying Fourier 
domain modeling for modeling any potential fields data are the 
following: 

• The expression of potential field in frequency domain 
gives us a different perspective to look at our data 

• Much of the processing and analysis of potential field 
data are done in frequency domain 

• Potential field is related to the source distribution by a 
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convolution with the Green’s function (will be explained 
later on) 

In this chapter, we will examine Fourier expression of simple 
potential functions and Fourier expression of field due to simple 
sources. 

5.1.2. FREQUENCY AND PHASE 

Before going over Fourier Transforms, we first need to know the 
basic theory behind it. There are several basic concepts that we will 
first cover before going through Fourier transforms. 

5.1.2.1. Waveforms 

A spring-mass system, as we see in the figure below, oscillates 
throughout time. The displacement of the mass from the oscillatory 
behavior can be graphed with respect to time as we see in the 
figure. It turns out this movement can be expressed as a sinusoidal 
function. We call this a waveform. 

The amplitude of the waveform depends on the constant before 
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the sin function. For example, the above figure shows an waveform 
with an amplitude of 2 units. The blue value in the below indicates 
the amplitude. 

f(t)= 2.0  *sin (2* π*2*t) 
If there is a function that has the form of f(t) = 1.0*sin(2*π*2*t), 

then the waveform will be exactly the same as the aforementioned 
example, except that the amplitude would be halved, as we can see 
in the blue line in the following figure: 

The period of the waveform depends on the value preceding t 
inside the sin function . One period represents the amount of time 
it takes for the waveform to undergo one cycle (1 peak and 1 
trough).  For example, the red text in the following waveform 
determines the period: 

f(t) = 2.0 * sin(2* π *2*t) 
If there is a function that has the form of f(t) = 2.0*sin(2*π*1*t), 

then the waveform will be exactly the same as the aforementioned 
example, except that the period is twice of that, as we can see in 
the blue line in the following figure: 

CHAPTER 5: FOURIER-DOMAIN MODELING &
TRANSFORMATIONS 231



5.1.2.2. Frequency 

The frequency of the waveform can be determined by the period. 
Frequency represents the number of cycles in one second, and 
the unit is (/s) or Hertz(Hz). Frequency can also be mathematically 
defined as: 

f = 1/T 
Where T is the period. 
If we have waveforms that have their peaks and troughs closer 

together, we say that the waveform has a high frequency. If they 
are far apart, then the waveform has low frequency. 
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Test your understanding: frequency 

What is the frequency of this waveform? What about the period? 

5.1.2.3. Phase 

Phase is determined by the argument inside the sin function. For 
example, the following figure shows two waveforms of different 
phases. The first function below is for the red line in the graph, and 
the second one is for the blue line in the graph. 

f(t) = 2.0 * sin(2 * π * 2 * t) 
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Notice that the two waveforms have the same amplitude and 
frequency, but one seems to be delayed compared to the other. 
This is because these two waveforms have different phases. 

Phase is the argument inside the sine(or cosine) function for 
a waveform. Given a fixed amplitude and frequency, phase 
determines when the peaks (or troughs) occur. Simply, it specifies 
where in the cycle is it oscillating at t=0. The unit for phase is 
in degrees or radians. 

There are two terms that are related to phase: in-phase and out-
of-phase. 

If the two peaks of two signals with the same frequency are in 
the exact same alignment at the same time, then they are called in-
phase. If the two peaks of two signals with the same frequency 
are not in an exact alignment at the same time, then they are out-
of-phase. The following figure gives out a visualization of the two 
difference. 
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The important concept that we want to take home from this is the 
fact that a sine wave and a cosine wave are 90 degrees out-of-
phase with each other. Thus,  we can express a waveform in two 
ways: using a sine wave or a cosine wave. 

5.1.2.4 General notation 

The more general notation of a waveform can be expressed as: 

    

or 

    

 
Where A is the amplitude, and  is the angual frequency in radians 
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per seconds. The angular frequency can be found from the 
equation: 

    

Main takeaways from this frequency and phase 

Any periodically oscillating sinusoidal wave can be characterized by three 
fundamental properties 

• Amplitude(A) 

• Frequency(  ) 

• Phase( ) 

A wave can be expressed using the following notation: 
f(t) = A sin(ωt + φ) 

or 
f(t) = A cos(ωt + φ) 

 

5.1.3. COMPLEX VARIABLE 

A complex variable can be expressed as such: 
    
where a and b are real numbers, and i is the imaginary unit that 

is equal to , thus 
Thus, a complex number can be separated into two: 

• a: real part 

• b: imaginary part 
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A complex number can be viewed as a point in the complex 
plane, as the following figure: 

5.1.3.1 Absolute value and argument 

We know that a complex number can be expressed as such: 
    
The absolute value(modulus) of this complex number is thus: 

    
The argument(phase) is the angle between the vector and the 

positive real axis. This makes more sense from the complex plane 
representation in 6.1.3. 

The argument is thus expressed as: 
    
where y is the projection of the complex number in the imaginary 

axis, and x is the projection of the complex number in the real axis. 
Therefore: 

    
and thus: 
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Test your understanding: Complex Number 

Given a complex number: 

    

Calculate its modulus and argument! 

5.1.3.2. Euler’s formula 

Euler’s formula is the fundamental relationship between 
the trigonometric functions and the complex exponential 
function. This can be mathematically expressed as: 

    

From Euler’s formula, we can express the complex number as: 

    
Therefore, z can also be expressed as: 
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In other words, a complex number can be expressed as either with 
a trigonometric function or an exponential function. 

Test your understanding: Euler’s Formula 

Let 

Calculate 

Hint:Hint:  Just plug in  to the function  
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Ans: i 

Consider that a mathematical notation for a cosine wave is: 
    
where A is the amplitude and  is phase. 
A different way to to express that wave is to use the following 

notation: 

    
The representation of this in the complex plane is as follows; 
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(Note that if you were to see something that looks like , please 
always keep in mind that this represents sinusoidal waves with 
amplitude A and phase ) 

5.1.3.3. Deriving a complex number 

Deriving an exponential function is much simpler than deriving a 
trigonometric function. Consider the following problem; 

    

Now, remember that: 
    
Therefore: 

    

    

Notice that the argument in the exponential has changed from 
 to 

The conclusion to this is that when you take a time derivative, 
the phase will change by . 
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5.1.3.4. Why bother with complex numbers? 

The first question that you might ask is: why do we need to know 
about complex numbers? The reason is: It turns out, the whole 
Fourier theory was built upon complex variables. 

Other than that, complex numbers offers a lot of mathematical 
conveniences, such as: 

• No need to deal with trigonometric functions 

• Exponentials are easier to manipulate 

• Some problems can be solved easier using complex 
number/complex analysis (examples: quantum physics, 
conformal transformations, AC circuits, etc.) 

If you are interested to learn more about complex numbers, here 
are some resources that might be of interest: 
• Complex Analysis Made Simple on youtube. 
• MIT OpenCourseWare: Development of the 
complex numbers 
• Functions of complex variables in StackExchange 
•Intuitive Arithmetic with Complex Numbers (Betterexplained.com) 

5.2. FOURIER TRANSFORM 

5.2.1. WAVEFORMS AND AMPLITUDE SPECTRUM 

Virtually, any real world waveforms can be represented as a sum of 
sins, no matter how complicated they may look. 

For example, take a look on this waveform: 
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The blue waveform may look complicated, but it is actually the 
sum of four other sinusoidal functions in the above graph, with the 
equation for each line being; 

Red line: 
Green line: 
Magenta line: 
Cyan line: 
This proves that no wonder how complex they are, 

waveforms are just a sum of sinusoidal waves. 
If we were to plot a waveform that is the sum of two sinusoidal 

waves, and plot the magnitude of each wave in terms of their 
frequency, we get something like this: 
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http://www.continuummechanics.org/fourierxforms.html 

The signal results from the sum of two sine waves. These two 
waves have different amplitudes, frequencies, and phases, and this 
difference is made more clear in the amplitude spectrum on the 
right side of the above figure. 

Another way to look at the difference between frequency domain 
and time domain is with the following figure: 
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The figure above shows two different ways of viewing the 
combination of these 3 waveforms. In time domain, it is the 
summation of these three waveforms (with noise), and thus the 
perceived signal in the time domain looks more complicated. When 
viewing the three waveforms in the frequency domain, it is in the 
form of three separate peaks that tells you the frequency and 
amplitude of said waveforms. 

5.2.2. DEFINITION 

Mathematically speaking, any waveform function can be expressed 
as: 

    

The term  is a sinusoidal wave, with the amplitude 
being . This essentially says that any waveform is a sum of 
many sinusoidal waves with different amplitudes, phases, and 
frequencies. 

The Fourier Transform allows us to find the constituent 
frequencies given a signal in time domain. This is mathematically 
expressed as: 
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It decomposes a signal into a series of sinusoidal waves of 
different amplitudes, frequencies, and phases. This helps identify 
what the sine and cosine components that make up the signal are. 

The inverse Fourier transform is thus: 

    

 
In terms of notation, we refer the Fourier transform of a function 

 as the capital , and the inverse Fourier transform as . 
Putting this in mathematical perspective: 

Fourier Transform: 
Inverse Fourier Transform: 
If you want to know more about Fourier transform(FT), here’s 

some optional reading material on FT: 

• https://betterexplained.com/articles/an-interactive-guide-
to-the-fourier-transform/ 

• http://visualizingmathsandphysics.blogspot.com/2015/06/
fourier-transforms-intuitively.html 

• https://www.ritchievink.com/blog/2017/04/23/
understanding-the-fourier-transform-by-example/ 

• https://learn.adafruit.com/fft-fun-with-fourier-transforms/
background 
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5.2.3. FROM TIME DOMAIN TO SPATIAL DOMAIN 

For now, you might notice that everything that we have talked 
about  so far is in time domain. However, potential field data is 
in the spatial domain. This does not seem to be a problem 
because Fourier transform also applies in the spatial domain. 
The Fourier transform in time and spatial domain can be seen in 
the following figure: 

Notice that they are both the same, except for the fact that the 
Fourier transform of a in time(t) domain is a function of angular 
frequency ( ), and in spatial(x) domain, the Fourier transform  is a 
function of wavenumber(k). Thus, everything in spatial domain is 
the same as in time domain, except we’re dealing with space (x) 
instead of time (t), and the Fourier transform involves wavenumber 
(k) instead of angular frequency ( ). 

As we  mentioned before, frequency is a measure of how many 
cycles per unit of time. Wavenumber is the measure of how many 
cycles per unit of distance. The following equation applies for 
wavenumber: 
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Where  is the wavelength (one cycle in unit of distance). 
Another concern is that the data maps that we have dealt with 

are 2-dimensional. Therefore, if we were to take the Fourier 
transform of such spatial data maps, then we need to do a 2D 
Fourier transform in spatial domain. The following is such 
equation: 

Note that  is the wavenumber in the x axis and  is the 
wavenumber in the y axis respectively. 

5.2.4. DC-COMPONENT 

There is one interesting result that we can see from the Fourier 
transform: 

    

If we have k=0, that means the Fourier transform would be: 

    

Fourier transform of a function f(x) evaluated at k=0 is simply 
the integral of this function over the entire x axis. And it is always 
real if f(x) is real. We call this the DC Component. Thus, the DC 
component is the Fourier transform of a function f(x) evaluated at 
k=0. 
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5.2.5. AMPLITUDE AND PHASE 

In general, Fourier transform of  is a complex function with a 
real and an imaginary part: 

    
Which also can be written as: 

    
where: 

    
and 

    

5.2.6. PROPERTIES 

There are several properties of Fourier transform. We will cover 
each one in this section. 

5.2.6.1. Linearity 5.2.6.1. Linearity 

If we have a two functions in the spatial domain, with each having 
a Fourier transform: 

Then the summation of the two functions in the spatial domain 
is also the summation in the Fourier domain as such: 

    

5.2.6.2. Scaling 5.2.6.2. Scaling 

If we have a function  with its Fourier transform : 
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, then if you stretch your  by 0.5, we would 
have an  with narrower band and higher amplitude. This is 
mathematically expressed as: 

    

• If a>1, we shrink the signal (the signal contains more high 
frequency content), then the Fourier transform of this 
new signal will contain higher frequencies (hence the ) 

• If a<1, we stretch the signal (the signal contains more low-
frequency contents) then the Fourier transform of this 
new signal will contain lower frequencies 

An example of this property can be seen in the following graph. 

Thus, a broad anomaly will have a narrower amplitude spectrum 
than a narrow anomaly. Because the width of an anomaly is directly 
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related to the depth of its source, we can expect that the 
narrowness of a Fourier-transformed anomaly will also be related 
to the depth of the source. 

Scaling Property 

If you stretch in spatial domain  you are shrinking in Fourier domain 
If you shrink in spatial domain  you are stretching in Fourier domain 

5.2.6.3. Shifting 5.2.6.3. Shifting 

If you have a function such that , then: 

    
Shifting a function along the x axis in the spatial domain is 

equivalent to adding a linear phase factor to the function’s Fourier 
transform. The amplitude spectrum is unaffected. 

5.2.6.4. Differentiation 5.2.6.4. Differentiation 

If we have a function such  that: 
then: 

    

As mentioned before in the previous section, the phase will 
change by . Thus, the amplitudes for low-frequency components 
will be suppressed, and the amplitudes for high-frequency 
components will be amplified. 

The concept of differentiation in the Fourier domain is applied 
in potential field data. Specifically, for derivative-based anomaly 
enhancement. For example, the following figure shows a bouguer 
anomaly and Gzz data map. We can see that by taking the 
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derivative of the gravity data, the anomalies are more enhanced 
and thus we see the boundaries of the anomaly clearer. 

Another way to enhance the anomaly is to take the horizontal 
gradient of the magnitude as seen in the following picture. We can 
see that the boundaries are more accentuated in the data map on 
the right. 

Bouguer anomaly 
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Tensor data 

With how well derivatives are in enhancing the anomalies, it is no 
surprise that we would want to do Fourier transform to these data 
maps. This is because, as mentioned before, the math involved 
in derivation in the fourier domain is much more simpler than in 
spatial domain. 

Summary of Fourier Transform Properties 

The properties of Fourier transform are: 
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• Linearity: Suppose that  and , then: 

    

• Scaling: Suppose that , then: 

    

• Shifting:  Suppose that , then: 

    

• Differentiation: Suppose that , then: 

    

 

5.2.6.5. Fourier transform of 1/r 5.2.6.5. Fourier transform of 1/r 

If you still remember the gravity potential, the equation is shown: 

    

where  is the gravitational constant,  is a small mass over 
the . 

Similar to the magnetic scalar potential: 

    

We observe that both gravity potential and magnetic scalar 
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potential have the . Before we apply Fourier transform to gravity 
potential and magnetic scalar potential, we need to figure out the 
Fourier transform of . Specifically, we need to make use of Bessel 
function and Hankel transform. But the derivation is 
mathematically involved, so we will skip the detailed derivations. 
For those who are interested, please refer to Blakely (1996, 
p271-273). 

After a series complicated derivation, we obtain: 

    

where, > , ,  is wave number. 
The equation above is the results for Fourier transform of . 
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5.3. TERMINOLOGY 

5.3.1. AMPLITUDE AND PHASE, AMPLITUDE SEPCTRUM 
AND PHASE SPECTRUM 

We can use an equation to do Fourier transform (shown in below). 

    

where  is a signal. IN most general cases, Fourier transform 
is a complex function with a real and an imaginary part. 

    
Also, if we apply Euler’s formulation, the Fourier transform can 

be expresses as: 

    
where, 

    

    

The  is called amplitude and  is named phase. If 
we want to transform a signal from spatial domain to the Fourier 
domain, we need to know both amplitude and phase. 

 is simply called amplitude spectrum, which is a function 
of wave number . In similar, we also called  phase spectrum, 
which means how phase change with the wave number . 

5.3.2. ENERGY AND POWER SPECTRUM 

The total energy of a real function f(x). It is an integral of entire real 
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axis of the square of amplitude, which measures how much energy 
in function . 

    

where  is Fourier transform which is a complex number. 
 is also called energy density function over frequency, 

which tells us, how energy of this function distribute with different 
wave numbers over frequency band. Sometimes,  is 
named energy spectral density, power spectral density (PSD) or 
power spectrum (PS). 

 

Power spectrum: the voice waveform over time (left) has a broad audio power 
spectrum (right). https://en.wikipedia.org/wiki/
File:Voice_waveform_and_spectrum.png 

 
We can see some high amplitude and low amplitude in the figure 

above (left), if we do the integration of square of amplitude, we will 
obtain the power spectrum (right). 

 

5.4. GRAVITY FOR A POINT MASS IN FOURIER 
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DOMAIN 

Recall Fourier transform of 1/r 

• 

Based on the Fourier transform of 1/r, we can calculate the 3D 
gravity modeling in Fourier domain with point mass. 

    

where  is point mass, U is gravitational potential. Then we apply 
Fourier transform, and will obtain: 

    

After applying Fourier transform of 1/r, it is easily to get: 
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where, > , . 
We currently measures the vertical component of gravity field Gz, 

which is derivative of gravity potential in z direction. 

    

Then, we apply Fourier transform, 

    

The derivative in z direction has nothing to do in x, y direction, so 
we can directly take the derivative outside, and obtain the following 
equation: 

    

Thus, we obtain the gravity measure (z component) after Fourier 
transform: 

    

Next, we are going to make a few observations about the 
equation, which will help us better understand the gravity. 
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Power spectrum of gravity anomalies caused by a point mass of 1 kg at depth 
1 km (assuming observation height 0 km). 

The x axis is wave number, y axis is normalized power spectrum 
of gravity anomalies with a point mass. This figure thus tell us how 
much energy there is at each wavenumber. The most obvious thing 
here is exponential decay. Another observation is maximum energy 
occurs at k=0 (zero wavenumber). When k = 0, we can obtain: 

    
where,  is a constant value,  is mass. 
We can easily observe that the power spectrum value at k=0 is 

proportional to the total mass. 
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Observation from the power spectrum in log scale, we noticed 
that it is a straight line with negative slope. Besides, the energy 
decreases exponentially with increasing wavenumber. The black 
lines show that the x axis is 1, y axis is -1, so the slope is -1. We knew 
that the depth is negative slope, so the depth for the anomaly in 
the figure above is 1 m. 

The rate of decreases on log scale is equal to the elevation 
difference between the source body and observation plane. 

    

    
If we set , 
    
The equation above mathematically illustrates that the rate of 

decrease depends on the depth of the source body. 
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The figures above have same depth but different masses, we 
noticed the trend is completely same, which means the mass does 
not change the decay rate and the decay rate has only to do with h. 
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Power spectrum of gravity anomalies caused by a point mass of 1 kg at depths 
1 km, 2km, 6km, and 10km (observation height 0 km). 

 
Here we created a synthetic model with same mass but located 

in different depth. The red line is shallowest one. We noticed from 
the figure above is if the source body is deeper, the energy decay 
faster and faster. Specifically, look at the source body located at 
10 km, the energy decay to 0 at 0.2 radians/km. In comparison, if 
source body located at 2 km (green) line, the energy decays to 0 
when wavenumber is about 1.2 radians/km. 

Then, we plot 4 cases in log scale, shown in below: 
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In similar trend, the source body is deeper, the energy decay is 
faster and faster, where energy decay is represented by the slope. 
The slope equal to -h, so the slope is smaller, the depth is deeper 
and the energy decay is faster. 

The summaries of two figures above 

• The decay rate depends upon depth. 

• The deeper the source, the faster the energy decays. 

• As source become deeper, energy at higher – wave numbers become smaller. 

• The gravity anomaly is approximately band limited. 

In previous experiment, we fixed observation at 0 km, and varied 
the depth of source bodies: 1km, 2km, 6 km and 10 km. If we fix the 
source body at a depth of 1 km and change the observation height: 

264 J IAJIA SUN



0km, -1 km, -5 km, and -9km, we will observe the exact same thing 
(shown in the figure below). 

(top left) changing observation heights. (top right) changing source body 
depth. (bottom left) changing observation heights in log scale. (bottom right) 
changing source body depth in log scale. 

 
From the figure above (top left and bottom left), we noticed 

that when source depth fixed, the decay rate depends upon 
observation height. The higher the observation height, the faster 
the energy decays. As observation become higher, energy at 
higher, wave numbers become smaller. 

This observation plays a critical role in data acquisition that is: 
if you want to resolve fine details (i.e., high wave number 
information) of your targets, you need to be closer to your target. If 
using the airborne platform, we have to fly as lower as we can. 

Here are several examples. 
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This is one field gravity data map simulated from five source bodies 
with fixed depth. The data map shown above is 1 meter above the 
surface. We can easily see the features at data maps. 

In the top right figure, we keep source body shape, depth same 
and the only thing changed is observation height. The observation 
height is changed from 1 m to 100 m. Compared with previous 
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map, we noticed that anomalies become much smooth. But we 
can still see a few features of source body. We can still tell there 
something subsurface. Keeping increasing observation height to 
200 m, this map is smooth and it is always explained as one source 
body rather five. 

The observation from the above figures is the height is higher, 
the gravity anomalies become smoother that means less high 
frequency information. This phenomenon can be explained as the 
higher the observation height, the faster the energy decays and 
wave numbers become smaller. 

Another example is: 

From the figure above, we noticed that the height of observation is 
increased, the power spectrum becomes more smooth. The more 
details about the figures above will be discussed in the following 
sections. 

A quick summary 
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• We have made quite a few observations based on this simple equation. 

• These insights help understand gravity well. 

• This is one of the reasons why we look at gravity data in Fourier doamin. 

5.5. FOURIER DOMAIN MODELING OF 
MAGNETIC DATA DUE TO A DIPOLE 

Let’s move on to the magnetic data for the simplest case of 
considering a magnetic dipole. 

5.5.1. FOURIER TRANSFORM OF MAGNETIC POTENTIAL 

For the magnetic scalar potential , which is the dot product 
of two vectors expressed in the following equation: 

Where the dipole moment is expressed as its magnitude and 
directions in 3D by . 

According to the definition of the dot product, the above 
magnetic scalar potential expression can be rearranged into the 
following equation: 

If we apply the Fourier transform to the magnetic potential in the 
above equation, through using properties such as the linearity and 
differentiation, we will then have the derivations as shown below. 
Since we are taking the Fourier transform in 2D x-y domain, the z-
direction differentiation is not relevant here. 

268 J IAJIA SUN



After above derivation, we are left with familiar expression of 

, which equals , with z’ > z0. 

Therefore, after substituting it into the Fourier transform 
equation, the simplified expression for the Fourier transform of 
magnetic potential is as following, consisting of four parts, the 
constant number , the magnitude of dipole moment , the 

complex number , and the exponential expression 
which only depends on the source body depth. 

Where the complex number 

depends only on the orientation of the dipole. 

5.5.2. FOURIER TRANSFORM OF TOTAL-FIELD ANOMALY 

Practically in the field survey, most likely we will collect total-field 
anomaly  as the magnetic data. Therefore, we can derive the 
vector B field by taking the negative gradient of the potential V, 
which can be mathematically expressed as: 

That is, any component (such as ) can be 
derived from the directional derivative of the magnetic potential. 

As we have talked before, the total field anomaly  is simply 
the projection of the Bfield onto the inducing field direction, which 

is . Therefore, mathematically, the total field 

anomaly is equal to the dot product of the inducing field direction 
with the Bfield, as shown below: 
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Similarly, after applying the Fourier transform to the total field 
anomaly, we will get the expression as follows: 

After simplifying this expression, we will have the Fourier 
transform as shown below, which consists of four parts: the 
constant number, the magnitude of dipole moment  (i.e., it 
depends on the source strength), the two directional dependent 
complex numbers  and  , and the depth-relevant 

exponential expression . 

Where another complex number is 

, and it depends only on inducing field direction; 

And the complex number  depends 

only on the orientation of the dipole. 

5.5.3. FOURIER TRANSFORM OF TOTAL-FIELD ANOMALY 
IN POLAR COORDINATES 

In order to better understand the Fourier transform of the total 
field anomaly expression derived above, let’s introduce its 
representation in polar system. 

In the formulas of the complex number , 

it consists of  and , which are wavenumbers in x and y 
directions. If we express  and  in polar coordinates, graphically 
explained in the figure below, we will have: 
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where  is the radial wavenumber. 
After replacing the  and  in polar coordinates, the  can 

then be written as: 

Another way of representing  is by using the Euler’s formula 
through amplitude and phase as a function of the angle , which 
can be re-written as 

Similarly, we can follow the same procedure to represent , 
which we will get: 

Now, let us substitute the polar representations of  and 
into the Fourier transform expression of the total field anomaly, we 
will get the following expression: 
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5.5.3.1. Interpretations of the first part of the amplitude 
spectrum 

If we only focus on the amplitude spectrum term in the above 
expression, which is a function of wavenumber  and angle  as 
shown below: 

The first part of this amplitude spectrum 
only varies with the angle , since once we fix the strength of the 
source body the magnitude  will become a constant. Therefore, 
given a fixed angle , along any ray originating from the origin, this 
part of the amplitude spectrum value is constant, that is, there is 
no decay on the ray since all values on this ray are equal. 

Thus, we can express the first part as : 

In brief summary so far, the amplitude spectrumterm can be 
written as: 

5.5.3.2. Interpretations of the second part of the amplitude 
spectrum 

Now let us focus on the second part of the amplitude 

spectrumterm , which has nothing to do with angle 
, but it is related with the observation height  and the depth , 

and the radial wavenumber . Then how does it look like? 
The graph plotted below is what it looks like as a function of 

the radial wavenumber . This figure implies that the energy 
increases to a peak value along with the increase of the 
wavenumber before starting decreasing. 
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Therefore, this second part of the amplitude spectrum determines 
how the amplitude spectrum changes along a ray and determines 
the shape of the energy change in that ray. 

Moreover, since this part has nothing to do with angle , the 
shape of the amplitude spectrum along any ray is the same; and 
this shape is determined by the depth of the source body . 
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Therefore, by looking at the shape of the amplitude spectrum along 
any ray, we can infer depth of the source body, no matter which ray 
we are looking at, since they all have the exact same shapes! 

In addition, the maximum energy does not occur at wavenumber 
k=0, but at a larger radial wavenumber that is dependent on the 
depth of the source dipole; once the wavenumbers exceeding this 
peak energy wavenumber, energy starts decaying monotonically 
and approaching exponential decay at higher wavenumbers. 

5.6. UPWARD CONTINUATION 

5.6.1. CONCEPTS OF UPWARD CONTINUATION 

Upward continuation is the process of using originally observed 
data to calculate the gravity or magnetic anomaly response that 
would be observed at locations above the original observation 
surface. Shifting the observation location to a higher elevation 
removes high-frequency signals from the near surface due to signal 
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attenuation with distance. This allows for the focus of lower-
frequency signals from deeper parts of a survey. 

5.6.2. UPWARD CONTINUATION IN SPATIAL DOMAIN 

Recall Green’s third identity: 

    

We previously stated that this is the theoretical basis for the 
upward continuation and the equivalent source technique. If 
we consider  to be harmonic, Green’s third identity is 
a representation formula which a potential field can be calculated 
at any point simply from the behavior of the field at its boundaries. 
This also means that no knowledge of the sources is required, 
except that none are located within the region. Unfortunately, the 
equation above requires not only the values of  on the surface, 
but also the values of its vertical derivative. These values are 
unlikely to be available in most practical applications. Fortunately, 
through some mathematical manipulation we can eliminate the 
derivative from the equation, but it is fairly complex so we won’t 
show that here. 

Eventually, we will obtain the following equation: 
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This equation is the upward-continuation integral. It shows how 
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to calculate the value of a potential field at any point above a level, 
horizontal surface at  from a complete knowledge of the field on 
the surface. This means upward continuation can be done in the 
spatial domain using this integral. 

At this point, we will need to cover convolution. 
The convolution of two functions  and  is: 

    

We can also convert this equation to the Fourier domain if we 
assume that  and 
: 

    
We will also need to examine convolution in 2D for upward 

continuation. In 2D, the convolution of two functions f(x) and g(x) 
in the spatial domain becomes: 

    

If we assume that 
 and 

, the Fourier domain equation is: 

    
This is important as we go back to our previously established 

upward continuation equation: 
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We can define 

    

to obtain the following equation: 

   

This equation is 2D convolution! 

5.6.3. UPWARD CONTINUATION IN FOURIER DOMAIN 

We can find the Fourier representation of upward continuation 
using the following equation: 

    
All we need now is an analytical expression of F[\psi], and we will 

skip the derivations here to get the following equation: 
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At this point, we can find the Fourier transform of the upward-
continued field in three steps: 

1. Transform the observed data via FFT (Fast Fourier 
Transform) 

2. Multiply by the exponential operator (e^{-h\sqrt{w_x^2 + 
w_y^2}}) 

3. Apply the inverse transform to obtain the upward-
continued field 

5.6.4. EXAMPLE 

In the example below, we will be showing the influence that upward 
continuation has on clean and noisy data. The figure below shows 
the difference between the shape of the input data in 2D and 3D 
between its original elevation and its upward continuation. 
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The following figure shows the same figures after noise has been 
introduced to the data. It is clear that the noise has a significant 
influence on the input data at its original data, but has been largely 
reduced by the upward continuation. 

The figure below shows the magnetic response of the input data 
at various elevations. Pay attention to the smoothing of the overall 
feature along with the reduction in high-frequency data as the 
elevation increases. 
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The same figure was reproduced using noisy data. Notice the 
significant difference between the accurate and noisy data at the 
lower elevations, and the reduction in noise as the responses are 
recorded at higher elevations of upward continuation. 
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5.7. REDUCTION TO POLE 

5.7.1. FUNDAMENTALS OF REDUCTION TO POLE 

Reduction to Pole (RTP) is the process of adjusting recorded 
magnetic data so that it appears as if it was recorded if the Earth’s 
inducing magnetic field was vertical. The figure below shows this 
adjustment, and note the difference in terms of symmetry between 
the unadjusted and adjusted data. It is important to note that RTP 
is difficult to do at low magnetic inclinations (next to the equator). 

CHAPTER 5: FOURIER-DOMAIN MODELING &
TRANSFORMATIONS 281



Blakely, 1996, p330 

The equation for RTP in the Fourier domain can be listed as the 
following: 

    

    

    
where  is the inducing field direction and  is the 

magnetization direction 
We can find the Fourier transform of RTP using the following 

three steps: 

1. Transform the observed data via FFT (Fast Fourier 
Transform) 

2. Multiply by 

3. Apply the inverse transform to obtain RTP 
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5.7.2. EXAMPLES OF REDUCTION TO POLE 

https://gpg.geosci.xyz/content/magnetics/magnetics_processing.html 

https://em.geosci.xyz/content/case_histories/balboa/processing.html 
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5.8. ISSUES WITH FOURIER MODELLING 

Throughout this chapter, we have gone through different methods 
in Fourier domain modelling using FFT (Fast Fourier Transform). 
However, FFT-based processing methods have two major 
prerequisites on data: 

1. The observation surface needs to be planar. 

2. Data needs to be interpolated to uniform grid. 

These two prerequisites/assumptions is not made in  practice 
because: 

1. Data are often acquired on undulating surface. For 
example, in an airborne survey with a helicopter, the flight 
height will be made constant to 50 m above the 
underlying terrain. However, the underlying terrain has a 
lot of hills and troughs. As such, the data measured by 
the  helicopter is not from a planar surface because it 
follows the topography. 

2. Majority of data are acquired along flight lines or 
scattered stations. What this means is that the survey 
grid is not uniform in practice. For example, suppose an 
airborne survey using a helicopter. The helicopter will fly 
in one direction and obtain some measurements. After 
going through one survey line, it will move to the next 
survey line, which is around 100m away from the first 
survey line, and then it measures the data along that 
survey line. Now, the problem with this is that the data 
measured along the survey line (let’s say y direction, 
measurement every 5m) is much finer than data 
measured adjacent to the survey lines (let’s say x 
direction, measurement every 100m). Thus, you can have 
a grid of  5m x 100m. Clearly this grid is not uniform, and 
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thus FFT will not work with this survey grid. One way to 
solve this problem is to use interpolation method but this 
has other problems as well 

3. The process of interpolation is a heavy processing 
step. Interpolation can be a dangerous process because it 
can create artifacts that does not exist in the data. 
Processed data maps would have many artifacts that 
would lead to misinterpretation. 

In the next chapter, we will be going through a different method 
that does not produce artifacts in the data. This method is called 
the equivalent source method. 
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CHAPTER  6 

Chapter 6: Interpretation 
methods 

6.1. REVIEW OF GREEN’S FIRST & THIRD 
IDENTITY 

Before going through equivalent source technique, it is best to 
review our understanding of Green’s theorem to understand the 
key concepts to this method. 

6.1.1. GREEN’S FIRST IDENTITY 

Recall Green’s first identity, which is: 

    

Where U, V are continuous functions with continuous first order 
partial derivative. U also has a second order derivative. An arbitrary 
vector  is also defined. 

Now, assume that: U is harmonic and U=V, then: 
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Let’s consider the above equation when U=0 on S. If that’s the 
case, then the right hand side of the equation vanishes. 

Because the  is always positive and continuous, then, that 
means: 

    
This implies that U is constant. We have already assumed that 

U=0 on the surface. Because U is continuous, then that constant 
must be zero. 

Therefore, if U is harmonic, U is 
continuously differentiable in R, and if U 
vanishes everywhere on the surface S, then U 
must also vanish everywhere within the 
volumes. Note that this only applies if the 
highlighted assumptions are true. 

Now, consider two functions,  and , be harmonic and have 
identical boundary conditions ( ). Thus, the 
function  must be harmonic. Because 
vanishes on S, then  must vanish at every point. 
Therefore,  is identical to . This implies that a function that 
is harmonic and continuously differentiable in R is uniquely 
determined by its value on surface S. Note that this only hold 
true if the highlighted assumptions are true. 

What does it mean in potential field? Well, gravity and magnetic 
scalar potentials are harmonic and continously differentiable. 
Therefore, gravity and magnetic scalar potentials are uniquely 
determined by their values on S. As such: gravity and magnetic 
data are uniquely determined by their values on surface S. 

Let’s use the following illustration to understand this concept. 
Suppose that there are two density distributions as such: 
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According to Green’s first identity, if the measurements on S are the 
same, then the gravity data from these two density models are the 
same. The two sources are called equivalent sources. 

6.1.2. GREEN’S THIRD IDENTITY 

Recall Green’s third identity. Considering the situation when V is 
harmonic: 

    

This implies that a harmonic function can be calculated at any 
point simply from its value and derivatives on the boundary 
(representation formula). Recall that this is used as a theoretical 
basis for upward continuation and equivalent source technique. 

Because gravity/magnetic potential is harmonic, thus a potential 
field can be calculated at any point simply from the behavior of the 
field on the boundary. In other words, no knowledge about sources 
is required, except that none may be located within the region. 

Unfortunately, Green’s third identity requires not only the values 
of V on the surface, but also the values of vertical derivative of  (

). This is unlikely to be available in most practical applications. 
Fortunately, by some mathematical manipulations, we can 
eliminate the derivative from the equation. 
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Through some mathematical manipulations, Green’s third 
identity can be expressed as: 

Blakely, 1996 

The above equation is called the upward-continuation integral. It 
shows how to calculate the value of a potential field at any point 
above a level, horizontal surface at  from a complete knowledge 
of the field on the surface. The function also still implies that the 
potential field in R is determined by its values on S. Thus, upward 
continuation can be done in spatial domain using the above 
integral. 

Let’s use the following example to understand this process. 

Suppose that we do not know anything about density model 1. The 
anomaly from the source body is measured on S. Then, we can 
construct an equivalent source that reproduces the measurement 
on S using a known source body parameter, let’s say a rectangular 
density model pictured in Density model 2. The equivalent source 
(density model 2) will have zero resemblace to the true source body 
(density model 1). But this is still applicable in processing (to do UC, 
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RTP,, component conversion, etc.), as long as it produces the same 
measurements on S. We can use equivalent source to calculate 
potential field values at any other locations in R. 

Since we do not care what the equivalent source looks like as 
long as it produces the same measurements on S, we typically do 
not bother constructing a 3D equivalent source. Thus, we typically 
construct an equivalent source layer (i.e. a thin sheet of density) as 
the equivalent source. 

There are several advantages to Equivalent source layer (ESL): 

1. Free of the instabilities with RTP at low latitudes 

2. Can do uneven-to-uneven surface continuation 

3. Can use ESL to do RTP (Reduction-To-Pole), UC (Upward 
Continuation), component conversion, as we can work 
with ESL in Fourier domain. 

The caveat is that to construct an equivalent source layer, we need 
to do an inversion. 

6.2. EQUIVALENT SOURCE 

Equivalent source is a very powerful image processing technique 
in processing and interpreting the potential field data. Almost all 
the data processing techniques we have talked about so far in 
Fourier domain can be accomplished by using equivalent source 
technique. 

6.2.1. INVERSION 

After reviewing the Green’s first and third identity, we have built a 
solid theoretical understanding of the equivalent source technique 
now. However, in order to construct an equivalent source layer, 
we do need to do an inversion, which can be computationally 
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expensive. Therefore, let us quickly go through the inversion firstly 
before we move on to the examples of applying the equivalent 
source technique. 

Assuming that we have collected N number of discretized data 
samples on the surface of the Earth, which are denoted as a vector 
array as shown below. 

Then we need equivalent source that can be represented by 
point or piece-wise constant values (such as density or 
magnetization parameters) that can reproduce the collected data. 
The equivalent source can be mathematically denoted by a vector 
as follows: 

These two elements, the data measurements on the boundary 
and the equivalent source, are linked by a kernel matrix, : 

That is, given the measured data , we want to construct . 
Unfornately, we need to store the dense matrix  that requires 
large amount of memory and CPU time. For example, a 128 by 128 
grid would require up to 1 Gb of memory to store this  matrix! 

Moreover, the construction of  is often an ill-posed problem 
(we will discuss it in more details later). One way of mitigating 
this ill-posed problem is by the Tikhonov regularization method. 
That is, we formulate a cost function  that consists of data misfit 
function , and the model objective function , these two terms 
are linked by a regularization parameter . Through minimizing 
the cost functional value , it is ensured that the reconstructed 
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equivalent source parameters  can reproduce the measured 
data. 

6.2.2. NUMERICAL EXAMPLES 

6.2.2.1. Upward continuation 

Here is a synthetic exampleof using equivalent source technique 
to do upward continuation. 

The figure on the left is a synthetic total-field anomaly map that 
shows typical magnetic dipolar data pattern. This magnetic data 
is simulated by assuming the inclination equals 50 degrees, 
declination equals 10 degrees. The surface topography map 
displayed on the right can be interpreted as the data observation 
heights; that is, the observation data are not collected at an even 
surface. 

Synthetic magnetic total-field anomaly data and its surface topography. Image 
courtesy of Yaoguo Li @ CSM 

The reconstructed equivalent source layer (top plot) is displayed 
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below. The reproduced data (bottom right plot) are simulated 
based on this equivalent source, and it is compared with the 
observed data map (bottom left plot) on the surface of the Earth. 

Constructed equivalent source layer and its corresponding data. Image 
courtesy of Yaoguo Li @ CSM 

Since this recovered equivalent source can reproduce the 
measured data on the surface, therefore we will take this 
equivalent source layer to do upward continuation, as if it is the 
true source. The figure shown below is the upward continuation at 
4 meters height (left plot), and it is compared with the true field 
measurement (right plot). These two plots look almost identical. 
Thus, this example proves that the equivalent source technique 
does work well. 
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Upward continuation in comparison with the true field. Image courtesy of 
Yaoguo Li @ CSM 

Here is another field example of using equivalent source 
technique to do upward continuation. 

The magnetic map on the left figure below is collected from a 
low magnetic area with inclination of -17 degrees, declination of 
1.5 degrees. The surface topography on the right map implies a 
very rough measurement height surface, with up to 500 meters 
variations. Since the data are not collected in a constant height, 
therefore we need to do upward continuation, and that requires an 
equivalent source layer. 
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Field measured total-field anomaly data, and the surface topography. Image 
courtesy of Yaoguo Li @ CSM 

After constructing and minimizing the objective functional value, 
given the measured total-field anomaly data, the reconstructed 
equivalent source layer is shown on the figure below (left plot). 
Then this equivalent source layer is used to do a forward modeling 
at the height of 870 meters above the Earth surface, the upward 
continued data simulated from this equivalent source is shown on 
right plot below. 
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Constructed equivalent source layer, and the upward-continued data based 
upon it. Image courtesy of Yaoguo Li @ CSM 

6.2.2.2. Stable RTP 

Equivalent source technique can also be used to do stable RTP even 
at low magnetic latitude. 

Here is a synthetic example. The left figure is the synthetically 
simulated TMI total-field anomaly data at a low magnetic latitude 
area; the data shows a typical positive-negative-positive pattern for 
magnetic data collected at low latitude region. The RTP in Fourier 
domain will be very challenging. Since this is a synthetic modeling, 
so we can use the true source to calculate the true RTP, which is 
displayed in the right plot below. 
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Synthetic TMI total-field anomaly data, and the true RTP. Image courtesy of 
Yaoguo Li @ CSM 

If the noise is added into the clean total-field anomaly data (left 
plot below), then do the RTP by using the Fourier domain technique 
we talked about before, the resulted poor RTP figure shown on the 
right plot below has a lot of elongated strips artifacts along the 
direction of declination (0 degree in this example). 

Observed data, and the computed poor RTP. Image courtesy of Yaoguo Li @ 
CSM 

However, after using the magnetic data map (left plot below) to 
construct the equivalent source layer, then using the equivalent 
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source layer to do the RTP (right plot below), the RTP quality is 
greatly improved. 

Observed data, with regularized RTP with positivity. Image courtesy of Yaoguo 
Li @ CSM 

The equivalent source RTP is very similar with the true RTP, as 
shown in the comparison figure below, which is very interpretable. 

Comparison of the true RTP with the Equivalent source RTP. Image courtesy of 
Yaoguo Li @ CSM 

Another is a field exampleof using equivalent source technique to 
compute RTP. 

The measure total-field anomaly at a low magnetic latitude is 
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shown on the left figure below, and its data collection surface 
topography (right plot) shows a 500 meters topography relief. 

Measured data map, and the surface topography. Image courtesy of Yaoguo Li 
@ CSM 

The computed RTP by using the equivalent source technique (right 
plot below) is very interpretable, since its peak anomaly lies on top 
of the anomaly body, and there are no elongated strips artifacts 
along the declination direction. 
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Measured data, and the computed Equivalent source RTP. Image courtesy of 
Yaoguo Li @ CSM 

Here is another field example of using equivalent source 
technique to compute RTP at low latitude. The study area is in the 
northeastern Carajas, the interested mineralization zone is located 
along the major fault striking along the NW-SE direction. The 
simplified geologic unit map are shown in the figure below. 

Study area location and the simplified geologic unit map. (Santos et al., 2015) 
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The collected magnetic data map was displayed in the figure below. 
Although it shows a typical positive-negative magnetic data pattern, 
it is very challenging to deal with due to various conditions. Firstly, 
the data are from very low latitude of -5.7 degrees; Secondly, the 
data has strong remanence; moreover, it is self-demag and 
affected by anisotropy. 

The measured magnetic data. (Leao-Santos et al., 2015) 

However, after applying the equivalent source technique, the data 
is much easier to work with. The equivalent source layer was 
constructed, and then it can be used to compute the RTP, the 
magnetic amplitude, the magnetic component Bx, By, Bz, or the 
upward continuation, since this equivalent source layer is able to 
reproduce the observed data on the surface of the Earth. 
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Constructed equivalent source layer, and the RTP. 

Constructed equivalent source layer, and the magnetic amplitude. 

Constructed equivalent source layer, and the Bz component. 
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Constructed equivalent source layer, and the upward continuation at 800 m. 

6.3. DEPTH ESTIMATES 

6.3.1. HALF WIDTH METHOD 

Shown in the figure below, assuming there is a small ore body in 
the subsurface. It is the spherical shape with a radius of 10 m, 
located at a depth of 25m  and the density contrast is 0.5 gm/cc. We 
are going to look at the gravity of the uniform sphere at different 
depth. 
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Gravity due to a uniform sphere where depth=25 m. 

Gravity due to a uniform sphere where depth=50 m. 
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Gravity due to a uniform sphere where depth=100 m. 

Gravity due to a uniform sphere where depth=200 m. 
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Gravity due to a uniform sphere where depth=400 m. 

 
Everything is same in the above 5 figures, the radius is same, the 

geometry of anomaly is same. The only thing different is the depth 
changing from the shallower to deeper. 

We can observe from the above figures that the maximum 
gravity measure decreases as depth increases. Besides, the width 
of the central peak region increases. 

Let’s look at a profile of gravity at depth = 25 m (seeing figure 
below), where the red line is profile. 
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We plot the gravity of this profile shown in below: 

A profile (Northing = 0 m) of the gravity measures, where anomaly body 
located at depth = 25 m. 

The observations from the figure above, the location at 0 
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corresponds to the location of source body and the peak located 
directly above the center of the anomaly body. The same things 
when we change the depth while keeping the same profile position 
(figures below). 

A profile (Northing = 0 m) of the gravity measures, where anomaly body 
located at depth = 50 m. 
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A profile (Northing = 0 m) of the gravity measures, where anomaly body 
located at depth = 100 m. 
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A profile (Northing = 0 m) of the gravity measures, where anomaly body 
located at depth = 200 m. 
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A profile (Northing = 0 m) of the gravity measures, where anomaly body 
located at depth = 400 m. 

Here, we observe two thing from the figures above: Firstly, the 
maximum value (peak) decreases as depth increases.  Secondly, 
width of the central peak region increases. These two trends are 
same with 2D maps of gravity measures. 

Question 

Can we use width to estimate depth??? 
Yes, we can! 

We noticed there are some correlation between width of the peak 
and depth. The width seems to be depended on the depth. So 
logically speaking, we can use the width to estimate the depth of 
source body. Let’s take a careful look at the profile at depth = 50 m. 
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Observation from the figure above, the peak value is 0.0055. The 
blue line is location of peak. The green line is the position of half 
of peak value, and at this point the value is 0.00282. The distance 
between blue line and green line is half width. In this particular 
case, the half width is 38 m. 

There is a rule of thumb that we can use to estimate depth for 
spheres: 

    
In the equation, the depth is really the vertical distance between 

your observation and the center of the sphere. Thus, in our 
particular example, the depth = 1.3 * 38 = 49.4 m, which is really 
close to the true depth 50 m. 

The half-width rule of thumb estimates depth for cylinders: 
    
The half-width rule of thumb is a practical rule, but there is a 

limitation that is we have to assume the shape of source body. If 
the source body is assumed to be sphere, we need to use 1.3 * half-
width. In comparison, if it is a cylinder, we need to use 1.0 * half-
width. 
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6.3.2. RULES OF THUMB FOR MAXIMUM DEPTH 

Firstly, we make clear of a term: non-uniqueness. Many geologically 
reasonable density or magnetization solutions may perfectly satisfy 
the observed anomaly, which means the many potential correct 
models can fit our observed gravity or magnetic data equally well. 
For example, gravity due to s sphere is the same as a point mass. 
Because of non-uniqueness, actually we can create multiple source 
bodies and each of created source body can fit our observed data. 
However, some parameters about the source bodies can be 
uniquely determined from the observed anomalies, without 
assumptions about the source distribution (Blakely, 1996, p239), 
eg., maximum depth. 

We are going to talk how to estimate maximum depth. The first 
question is what is maximum depth. 
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Maximum depth to causative sources based on first, second, and third 
derivatives fo their anomalies. Profile A(x) represents either a magnetic or 
gravity anomaly. (Blakely, 1996, p240) 

 
The black curve is gravity or magnetic measures. The depth to a 

plane (the dash line shown above) below which the entire source 
distribution lies, which is represented by ‘d’ in the figure above. The 
maximum depth ‘d’ can be determined based on first, second or 
third derivatives of gravity or magnetic anomalies along profiles. 
We can use the information from derivative to help us estimate the 
depth. 

We can estimate maximum depth for 3D gravity anomalies using 
the following equations (Blakely, 1996, p240): 
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where, the density of both signs that means the gravity 
anomalies could be both positive and negative.  is gravitational 
constant.  is maximum density value.  is maximum 
value of the second order derivative.  is maximum value 
of the third order derivative. 

For both above equations, the upper limitation of maximum 
depth is right hand side. If we wanna use it to estimate maximum 
depth, we have to roughly estimate the maximum density value 

. For example, we can estimate the maximum density value 
through measures of crops, borehole gravity measurements or our 
basic understanding of rocks. Here is a specific example to show 
what’s the meaning of these two equations. If we measures the 
maximum depth is 400 meters, which means the depth of source 
body cannot be deeper than 400 m. 

If the density entirely positive or entirely negative rather density 
of both signs, there are many other extra rules we can use to 
estimate the maximum depth. 

    

where the rule is for all x. 

    

where the rule is for all x and  is negative. 
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All these five rules above can help us estimate the maximum 
depth. We are going to talk about one rule specifically. 

In the rule , we don’t need estimate maximum 

density value, which is more convenient to use. In the figure, we 
have two gravity profiles. These two profile have same maximum 
value because of peak is overlap with each other. The red curve 
decay faster than blue curve that means the first order derivative of 
red curve is larger than blue curve. Therefore, the maximum depth 
of blue curve is deeper than red curve, because the denominator of 
red curve is larger than blue cure. Another way to understand this 
is based on the first method we talked before, the half-width of the 
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blue curve is larger than red, so the depth of blue curve is deeper 
than red curve. 

The rules to estimate the maximum depth for 2D gravity 
anomalies are shown below: 

    

where the rule is for all x. 

    

where the rule is for all x and  is negative. 

    

    
where the rule is for symmetric anomaly. 
The maximum depth estimation for 3D magnetic anomalies are 

following: 
No restrictions on magnetization: 

    

    

Magnetization everywhere parallel and same sense: 

    

    

Vertical  and vertical : 
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Vertical  and vertical ;  everywhere of same sense: 

    

    

where  is maximum value of magnetization. 
 is direction in which magnetic field is measured. 

The maximum depth estimation for =2D magnetic anomalies are 
following: 

No restrictions on magnetization: 

    

    

 everywhere parallel and same sense: 
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6.3.3. EULER DECONVOLUTION 

The previous methods of depth estimation that we covered are 
best suited for anomalies caused by single and isolated bodies. 
However, there is another class of techniques that consider 
magnetic or gravity anomalies caused by multiple and relatively 
simple sources. One of these methods is Euler Deconvolution. 
In order to understand Euler Deconvolution, we need to recall 
Harmonic functions. 

6.3.3.1 Harmonic Functions 6.3.3.1 Harmonic Functions 

    
If the Laplacian of a vector  is equal to zero, then  is a 

harmonic function. Additionally, any spacial derivative of a 
harmonic function is also harmonic. The spatial derivatives and 
Laplacian operator are also commutative. E.g., 

. This means that we can generate a host 
of harmonic functions from a given harmonic function. For 
example, if we consider the vector (\frac{1}{r}), we know that it is 
harmonic as . It therefore follows that , , and 

 are all harmonic. The last harmonic function listed is 
important to remember, as it describes the magnetic potential of 
a dipole. Here, we can note that the scalar magnetic potential is 
harmonic, which also means that any component of the Earth’s 
magnetic field is also harmonic. This is because any component of 
the magnetic field is simply a spacial derivative of the potential. 

6.3.3.2 Homogeneous Functions 6.3.3.2 Homogeneous Functions 

A function  is homogeneous of degree  if it satisfies Euler’s 
equation: 

320 J IAJIA SUN



    

In a simple example, if , we can state that  is 
homogeneous of degree 3. Similarly,  is homogeneous of 
degree 2 and  of degree 1. In a more complex example, 
we can analyze  which is homogeneous of degree 0. 
Similarly,  is homogeneous of degree -1 and V=  of degree 
-2. For any vector , if it is homogeneous then any derivative 
of  is also homogeneous. As we established previously,  is 
homogeneous and therefore the potential of a magnetic dipole is 
too. 

If a homogeneous function is also harmonic, it can be represented in 
spherical coordinates as a sum of spherical surface harmonics. 

6.3.3.3 Euler’s Equation 6.3.3.3 Euler’s Equation 

We can express Euler’s equation using the following general form: 
    
In this form, it is easy to show that  satisfies Euler’s 

equation with . Therefore, the potential of a point mass must 
also be homogeneous with . Next, we will take a look at the 
total-field anomaly of a dipole: 

    

This equation satisfies Euler’s equation with . 
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Next, let us consider a magnetic survey. We will set  as the 
ith measurement at location (x,y,z). Additionally, we will assume 
the center of the source body is at location . We can 
represent this survey according to Euler’s equation: 

    

Similarly, other measurements at other locations can be 
represented by expanding the previous equation: 

    

We can solve this equation using a least-squares method for 
 if we assume a value of . 

6.3.3.4 Example of Euler’s Deconvolution 6.3.3.4 Example of Euler’s Deconvolution 

The example used below comes from a Geophysics Tutorial by Leonardo 
Uieda, Vanderlei C. Oliveira Jr, and Valéria C. F. Barbosa. 
Uieda, L., V. C. Oliveira Jr, and V. C. F. Barbosa (2014), Geophysical tutorial: 
Euler deconvolution of potential-field data, The Leading Edge, 33(4), 
448-450, doi:10.1190/tle33040448.1 
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6.3.4. SPECTRAL DEPTH ESTIMATION 

Spectral depth estimation is done by calculating the radially 
averaged power spectrum of potential field data using the Fourier 
Transform. It is found by taking the average over points on 
concentric circles followed by smoothing along radial wave 
numbers. An example is shown in the figure below. 

There a couple of important properties related to the radially 
averaged power spectrum for single source bodies that we will 
discuss. In regards to the decay of the power spectra of gravity 
and magnetic data, this decay depends primarily on the source 
depth. Deeper source depths result in faster decay of the power 
spectra, also leading to narrower recorded bandwidth. A semi-log 
plot can be used to plot the radially averaged power spectra, as 
parts of the spectra will appear as straight line segments. The slope 
of these line segments is proportional to the source depth, and can 
be described using this equation: 

    
Note that in the intermediate wavenumber band, the slope is 

proportional to twice the source depth. 
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We will briefly discuss a paper by Spector and Grant (1970) on the 
Ensemble Average and power spectra. In this paper, an ensemble 
of rectangular prisms were used to represent parameters that were 
randomly distributed, uncorrelated, and had uniform probability. 
They used this to examine the expected power spectra of a 
magnetic field, and reached some surprising conclusions. 

    
if 
In this case,  is the average central depth of the ensemble 

and  is the depth interval within which  is uniformly distributed. 
The authors concluded that the power spectrum of the ensemble 
behaves the same as an “average” member from within the 
ensemble. 
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Next, we will take a look at field data collected from Kirtland. 
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Airborne magnetic data collected over Kirtland 
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The radially averaged power spectrum of the Kirtland data, with the power 
spectra of three rectangular ensembles compared to the actual power 
spectrum 

Note that with the radially averaged power spectrum of the Kirtland 
data, the majority of the rectangular ensembles match the actual 
power spectrum almost perfectly, confirming the results of the 
Spector and Grant paper. 
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This is where you can add appendices or other back matter. 
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